Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32522
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBellas Aláez, Francisco Men_UK
dc.contributor.authorTorres Palenzuela, Jesus Men_UK
dc.contributor.authorSpyrakos, Evangelosen_UK
dc.contributor.authorGonzalez Vilas, Luisen_UK
dc.date.accessioned2021-04-14T00:04:15Z-
dc.date.available2021-04-14T00:04:15Z-
dc.date.issued2021-04en_UK
dc.identifier.other199en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32522-
dc.description.abstractThis work presents new prediction models based on recent developments in machine learning methods, such as Random Forest (RF) and AdaBoost, and compares them with more classical approaches, i.e., support vector machines (SVMs) and neural networks (NNs). The models predict Pseudo-nitzschia spp. blooms in the Galician Rias Baixas. This work builds on a previous study by the authors (doi.org/10.1016/j.pocean.2014.03.003) but uses an extended database (from 2002 to 2012) and new algorithms. Our results show that RF and AdaBoost provide better prediction results compared to SVMs and NNs, as they show improved performance metrics and a better balance between sensitivity and specificity. Classical machine learning approaches show higher sensitivities, but at a cost of lower specificity and higher percentages of false alarms (lower precision). These results seem to indicate a greater adaptation of new algorithms (RF and AdaBoost) to unbalanced datasets. Our models could be operationally implemented to establish a short-term prediction system.en_UK
dc.language.isoenen_UK
dc.publisherMDPIen_UK
dc.relationBellas Aláez FM, Torres Palenzuela JM, Spyrakos E & Gonzalez Vilas L (2021) Machine Learning Methods Applied to the Prediction of Pseudo-nitzschia spp. Blooms in the Galician Rias Baixas (NW Spain). ISPRS International Journal of Geo-Information, 10 (4), Art. No.: 199. https://doi.org/10.3390/ijgi10040199en_UK
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectharmful algal blooms (HABs)en_UK
dc.subjectPseudo-nitzschia spp.en_UK
dc.subjectGalician Rias Baixasen_UK
dc.subjectcoastal embaymenten_UK
dc.subjectsupport vector machines (SVMs)en_UK
dc.subjectneural networks (NNs)en_UK
dc.subjectRandom Forest (RF)en_UK
dc.subjectAdaBoosten_UK
dc.titleMachine Learning Methods Applied to the Prediction of Pseudo-nitzschia spp. Blooms in the Galician Rias Baixas (NW Spain)en_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/ijgi10040199en_UK
dc.citation.jtitleISPRS International Journal of Geo-Informationen_UK
dc.citation.issn2220-9964en_UK
dc.citation.volume10en_UK
dc.citation.issue4en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderHorizon 2020 (Outputs)en_UK
dc.citation.date25/03/2021en_UK
dc.contributor.affiliationUniversity of Vigoen_UK
dc.contributor.affiliationUniversity of Vigoen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationUniversity of Vigoen_UK
dc.identifier.isiWOS:000643076000001en_UK
dc.identifier.scopusid2-s2.0-85106537227en_UK
dc.identifier.wtid1717082en_UK
dc.date.accepted2021-03-23en_UK
dcterms.dateAccepted2021-03-23en_UK
dc.date.filedepositdate2021-04-13en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBellas Aláez, Francisco M|en_UK
local.rioxx.authorTorres Palenzuela, Jesus M|en_UK
local.rioxx.authorSpyrakos, Evangelos|en_UK
local.rioxx.authorGonzalez Vilas, Luis|en_UK
local.rioxx.projectProject ID unknown|Horizon 2020 (Outputs)|en_UK
local.rioxx.freetoreaddate2021-04-13en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2021-04-13|en_UK
local.rioxx.filenameijgi-10-00199.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2220-9964en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
ijgi-10-00199.pdfFulltext - Published Version2.52 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.