Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32519
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMcMillan, Daviden_UK
dc.date.accessioned2021-04-13T00:01:28Z-
dc.date.available2021-04-13T00:01:28Z-
dc.date.issued2021-07en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32519-
dc.description.abstractWe seek to forecast sector stock returns using established predictor variables. Existing empirical evidence focuses on market level data and thus sector data provides fertile ground for research. In addition to in-sample predictive regressions, we consider recursive and rolling forecasts and whether such forecasts can be used successfully in a sector rotation portfolio. The results for ten sectors and eleven predictor variables highlight that two variables, the default return and stock return variance, have significant predictive power across the stock market series. Forecast results are also supportive of these series (especially the default return), which can outperform benchmark and alternative forecast models across a range of metrics. A sector rotation strategy based on these forecasts produces positive abnormal returns and a Sharpe ratio higher than the baseline model. An examining of the sectors at each rotation reveals that a small number of dominate in the constructed portfolios.en_UK
dc.language.isoenen_UK
dc.publisherPalgrave Macmillanen_UK
dc.relationMcMillan D (2021) Forecasting Sector Stock Market Returns. Journal of Asset Management, 22 (5), pp. 291-300. https://doi.org/10.1057/s41260-021-00220-6en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. This is a post-peer-review, pre-copyedit version of an article published in Journal of Asset Management The final authenticated version is available online at: https://doi.org/10.1057/s41260-021-00220-6.en_UK
dc.rights.urihttps://storre.stir.ac.uk/STORREEndUserLicence.pdfen_UK
dc.subjectSectorsen_UK
dc.subjectStock Returnsen_UK
dc.subjectForecastsen_UK
dc.subjectTime-Varyingen_UK
dc.titleForecasting Sector Stock Market Returnsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2022-05-05en_UK
dc.rights.embargoreason[sector_forec_final.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1057/s41260-021-00220-6en_UK
dc.citation.jtitleJournal of Asset Managementen_UK
dc.citation.issn1479-179Xen_UK
dc.citation.issn1470-8272en_UK
dc.citation.volume22en_UK
dc.citation.issue5en_UK
dc.citation.spage291en_UK
dc.citation.epage300en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emaildavid.mcmillan@stir.ac.uken_UK
dc.citation.date04/05/2021en_UK
dc.contributor.affiliationAccounting & Financeen_UK
dc.identifier.isiWOS:000647036000001en_UK
dc.identifier.scopusid2-s2.0-85105083053en_UK
dc.identifier.wtid1720359en_UK
dc.contributor.orcid0000-0002-5891-4193en_UK
dc.date.accepted2021-04-08en_UK
dcterms.dateAccepted2021-04-08en_UK
dc.date.filedepositdate2021-04-12en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMcMillan, David|0000-0002-5891-4193en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2022-05-05en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2022-05-04en_UK
local.rioxx.licencehttps://storre.stir.ac.uk/STORREEndUserLicence.pdf|2022-05-05|en_UK
local.rioxx.filenamesector_forec_final.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1479-179Xen_UK
Appears in Collections:Accounting and Finance Journal Articles

Files in This Item:
File Description SizeFormat 
sector_forec_final.pdfFulltext - Accepted Version494.02 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.