Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32495
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Buzz-Pollinated Crops: A Global Review and Meta-analysis of the Effects of Supplemental Bee Pollination in Tomato
Author(s): Cooley, Hazel
Vallejo-Marín, Mario
Keywords: agriculture
bee
buzz pollination
tomato
pollinator
Issue Date: Apr-2021
Date Deposited: 31-Mar-2021
Citation: Cooley H & Vallejo-Marín M (2021) Buzz-Pollinated Crops: A Global Review and Meta-analysis of the Effects of Supplemental Bee Pollination in Tomato. Journal of Economic Entomology, 114 (2), pp. 505-519. https://doi.org/10.1093/jee/toab009
Abstract: Buzz-pollinated plants require visitation from vibration producing bee species to elicit full pollen release. Several important food crops are buzz-pollinated including tomato, eggplant, kiwi, and blueberry. Although more than half of all bee species can buzz pollinate, the most commonly deployed supplemental pollinator, Apis mellifera L. (Hymenoptera: Apidae; honey bees), cannot produce vibrations to remove pollen. Here, we provide a list of buzz-pollinated food crops and discuss the extent to which they rely on pollination by vibration-producing bees. We then use the most commonly cultivated of these crops, the tomato, Solanum lycopersicum L. (Solanales: Solanaceae), as a case study to investigate the effect of different pollination treatments on aspects of fruit quality. Following a systematic review of the literature, we statistically analyzed 71 experiments from 24 studies across different geopolitical regions and conducted a meta-analysis on a subset of 21 of these experiments. Our results show that both supplemental pollination by buzz-pollinating bees and open pollination by assemblages of bees, which include buzz pollinators, significantly increase tomato fruit weight compared to a no-pollination control. In contrast, auxin treatment, artificial mechanical vibrations, or supplemental pollination by non-buzz-pollinating bees (including Apis spp.), do not significantly increase fruit weight. Finally, we compare strategies for providing bee pollination in tomato cultivation around the globe and highlight how using buzz-pollinating bees might improve tomato yield, particularly in some geographic regions. We conclude that employing native, wild buzz pollinators can deliver important economic benefits with reduced environmental risks and increased advantages for both developed and emerging economies.
DOI Link: 10.1093/jee/toab009
Rights: © The Author(s) 2021. Published by Oxford University Press on behalf of Entomological Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
toab009.pdfFulltext - Published Version573.25 kBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.