Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32410
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWhytock, Robin Cen_UK
dc.contributor.authorŚwieżewski, Jędrzejen_UK
dc.contributor.authorZwerts, Joeri Aen_UK
dc.contributor.authorBara‐Słupski, Tadeuszen_UK
dc.contributor.authorKoumba Pambo, Aurélie Floreen_UK
dc.contributor.authorRogala, Mareken_UK
dc.contributor.authorBahaa‐el‐din, Lailaen_UK
dc.contributor.authorBoekee, Kellyen_UK
dc.contributor.authorBrittain, Stephanieen_UK
dc.contributor.authorCardoso, Anabelle Wen_UK
dc.contributor.authorHenschel, Philippen_UK
dc.contributor.authorLehmann, Daviden_UK
dc.contributor.authorMomboua, Briceen_UK
dc.contributor.authorOrbell, Christopheren_UK
dc.contributor.authorAbernethy, Katharine Aen_UK
dc.date.accessioned2021-03-12T01:14:01Z-
dc.date.available2021-03-12T01:14:01Z-
dc.date.issued2021-06en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32410-
dc.description.abstract1. Ecological data are collected over vast geographic areas using digital sensors such as camera traps and bioacoustic recorders. Camera traps have become the standard method for surveying many terrestrial mammals and birds, but camera trap arrays often generate millions of images that are time‐consuming to label. This causes significant latency between data collection and subsequent inference, which impedes conservation at a time of ecological crisis. Machine learning algorithms have been developed to improve the speed of labelling camera trap data, but it is uncertain how the outputs of these models can be used in ecological analyses without secondary validation by a human. 2. Here, we present our approach to developing, testing and applying a machine learning model to camera trap data for the purpose of achieving fully automated ecological analyses. As a case‐study, we built a model to classify 26 Central African forest mammal and bird species (or groups). The model generalizes to new spatially and temporally independent data (n = 227 camera stations, n = 23,868 images), and outperforms humans in several respects (e.g. detecting ‘invisible’ animals). We demonstrate how ecologists can evaluate a machine learning model's precision and accuracy in an ecological context by comparing species richness, activity patterns (n = 4 species tested) and occupancy (n = 4 species tested) derived from machine learning labels with the same estimates derived from expert labels. 3. Results show that fully automated species labels can be equivalent to expert labels when calculating species richness, activity patterns (n = 4 species tested) and estimating occupancy (n = 3 of 4 species tested) in a large, completely out‐of‐sample test dataset. Simple thresholding using the Softmax values (i.e. excluding ‘uncertain’ labels) improved the model's performance when calculating activity patterns and estimating occupancy but did not improve estimates of species richness. 4. We conclude that, with adequate testing and evaluation in an ecological context, a machine learning model can generate labels for direct use in ecological analyses without the need for manual validation. We provide the user‐community with a multi‐platform, multi‐language graphical user interface that can be used to run our model offline.en_UK
dc.language.isoenen_UK
dc.publisherWileyen_UK
dc.relationWhytock RC, Świeżewski J, Zwerts JA, Bara‐Słupski T, Koumba Pambo AF, Rogala M, Bahaa‐el‐din L, Boekee K, Brittain S, Cardoso AW, Henschel P, Lehmann D, Momboua B, Orbell C & Abernethy KA (2021) Robust ecological analysis of camera trap data labelled by a machine learning model. Methods in Ecology and Evolution, 12 (6), pp. 1080-1092. https://doi.org/10.1111/2041-210x.13576en_UK
dc.relation.urihttp://hdl.handle.net/11667/170en_UK
dc.rights© 2021 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en_UK
dc.subjectartificial intelligenceen_UK
dc.subjectbiodiversityen_UK
dc.subjectbirdsen_UK
dc.subjectCentral Africaen_UK
dc.subjectmammalsen_UK
dc.titleRobust ecological analysis of camera trap data labelled by a machine learning modelen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1111/2041-210x.13576en_UK
dc.citation.jtitleMethods in Ecology and Evolutionen_UK
dc.citation.issn2041-210Xen_UK
dc.citation.volume12en_UK
dc.citation.issue6en_UK
dc.citation.spage1080en_UK
dc.citation.epage1092en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commission (Horizon 2020)en_UK
dc.citation.date10/03/2021en_UK
dc.description.notesAdditional co-authors: Cisquet Kiebou Opepa, Ross T. Pitman, Hugh S. Robinsonen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationAppsilon Data Scienceen_UK
dc.contributor.affiliationUtrecht Universityen_UK
dc.contributor.affiliationUtrecht Universityen_UK
dc.contributor.affiliationAgence Nationale des Parcs Nationaux (ANPN)en_UK
dc.contributor.affiliationAppsilon Data Scienceen_UK
dc.contributor.affiliationUniversity of KwaZulu-Natalen_UK
dc.contributor.affiliationSmithsonian Tropical Research Instituteen_UK
dc.contributor.affiliationUniversity of Oxforden_UK
dc.contributor.affiliationYale Universityen_UK
dc.contributor.affiliationPanthera, New Yorken_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationAgence Nationale des Parcs Nationaux (ANPN)en_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.identifier.isiWOS:000627162500001en_UK
dc.identifier.scopusid2-s2.0-85102314419en_UK
dc.identifier.wtid1712845en_UK
dc.contributor.orcid0000-0002-0127-6071en_UK
dc.contributor.orcid0000-0001-7005-8003en_UK
dc.contributor.orcid0000-0003-3841-6389en_UK
dc.contributor.orcid0000-0002-9949-4551en_UK
dc.contributor.orcid0000-0001-8131-5204en_UK
dc.contributor.orcid0000-0002-7865-0391en_UK
dc.contributor.orcid0000-0002-4327-7259en_UK
dc.contributor.orcid0000-0002-4529-8117en_UK
dc.contributor.orcid0000-0001-9338-9411en_UK
dc.contributor.orcid0000-0002-0393-9342en_UK
dc.date.accepted2021-01-25en_UK
dcterms.dateAccepted2021-01-25en_UK
dc.date.filedepositdate2021-03-11en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorWhytock, Robin C|0000-0002-0127-6071en_UK
local.rioxx.authorŚwieżewski, Jędrzej|0000-0001-7005-8003en_UK
local.rioxx.authorZwerts, Joeri A|0000-0003-3841-6389en_UK
local.rioxx.authorBara‐Słupski, Tadeusz|en_UK
local.rioxx.authorKoumba Pambo, Aurélie Flore|en_UK
local.rioxx.authorRogala, Marek|0000-0002-9949-4551en_UK
local.rioxx.authorBahaa‐el‐din, Laila|en_UK
local.rioxx.authorBoekee, Kelly|0000-0001-8131-5204en_UK
local.rioxx.authorBrittain, Stephanie|0000-0002-7865-0391en_UK
local.rioxx.authorCardoso, Anabelle W|0000-0002-4327-7259en_UK
local.rioxx.authorHenschel, Philipp|en_UK
local.rioxx.authorLehmann, David|0000-0002-4529-8117en_UK
local.rioxx.authorMomboua, Brice|en_UK
local.rioxx.authorOrbell, Christopher|0000-0001-9338-9411en_UK
local.rioxx.authorAbernethy, Katharine A|0000-0002-0393-9342en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2021-03-11en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc/4.0/|2021-03-11|en_UK
local.rioxx.filename2041-210X.13576.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2041-210Xen_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
2041-210X.13576.pdfFulltext - Published Version2.51 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.