Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32386
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmed, Ramien_UK
dc.contributor.authorGogate, Mandaren_UK
dc.contributor.authorTahir, Ahsenen_UK
dc.contributor.authorDashtipour, Kiaen_UK
dc.contributor.authorAl-tamimi, Bassamen_UK
dc.contributor.authorHawalah, Ahmaden_UK
dc.contributor.authorEl-Affendi, Mohammed Aen_UK
dc.contributor.authorHussain, Amiren_UK
dc.date.accessioned2021-03-10T01:01:46Z-
dc.date.available2021-03-10T01:01:46Z-
dc.date.issued2021-03en_UK
dc.identifier.other340en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32386-
dc.description.abstractOffline Arabic Handwriting Recognition (OAHR) has recently become instrumental in the areas of pattern recognition and image processing due to its application in several fields, such as office automation and document processing. However, OAHR continues to face several challenges, including the high variability of the Arabic script and its intrinsic characteristics such as cursiveness, ligatures, and diacritics, the unlimited variation in human handwriting, and the lack of large public databases. In this paper, we have introduced a novel context-aware model based on deep neural networks to address the challenges of recognizing offline handwritten Arabic text, including isolated digits, characters, and words. Specifically, we have proposed a supervised Convolutional Neural Network (CNN) model that contextually extracts optimal features and employs batch normalization and dropout regularization parameters to prevent overfitting and further enhance its generalization performance when compared to conventional deep learning models. We employed numerous deep stacked-convolutional layers to design the proposed Deep CNN (DCNN) architecture. The proposed model was extensively evaluated, and it was observed to achieve excellent classification accuracy when compared to the existing state-of-the-art OAHR approaches on a diverse set of six benchmark databases, including MADBase (Digits), CMATERDB (Digits), HACDB (Characters), SUST-ALT (Digits), SUST-ALT (Characters), and SUST-ALT (Names). Further comparative experiments were conducted on the respective databases using the pre-trained VGGNet-19 and Mobile-Net models; additionally, generalization capabilities experiments on another language database (i.e., MNIST English Digits) were conducted, which showed the superiority of the proposed DCNN model.en_UK
dc.language.isoenen_UK
dc.publisherMDPIen_UK
dc.relationAhmed R, Gogate M, Tahir A, Dashtipour K, Al-tamimi B, Hawalah A, El-Affendi MA & Hussain A (2021) Novel Deep Convolutional Neural Network-Based Contextual Recognition of Arabic Handwritten Scripts. Entropy, 23 (3), Art. No.: 340. https://doi.org/10.3390/e23030340en_UK
dc.rightsCopyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectArabic Handwrittenen_UK
dc.subjectBatch normalizationen_UK
dc.subjectDCNNen_UK
dc.subjectDropouten_UK
dc.subjectdatabasesen_UK
dc.titleNovel Deep Convolutional Neural Network-Based Contextual Recognition of Arabic Handwritten Scriptsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2021-03-13en_UK
dc.identifier.doi10.3390/e23030340en_UK
dc.identifier.pmid33805765en_UK
dc.citation.jtitleEntropyen_UK
dc.citation.issn1099-4300en_UK
dc.citation.volume23en_UK
dc.citation.issue3en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailkia.dashtipour@stir.ac.uken_UK
dc.citation.date13/03/2021en_UK
dc.contributor.affiliationSudan University for Sciences and Technologyen_UK
dc.contributor.affiliationEdinburgh Napier Universityen_UK
dc.contributor.affiliationEdinburgh Napier Universityen_UK
dc.contributor.affiliationEdinburgh Napier Universityen_UK
dc.contributor.affiliationSmart Big Data Solutions Ltden_UK
dc.contributor.affiliationTaibah Universityen_UK
dc.contributor.affiliationPrince Sultan Universityen_UK
dc.contributor.affiliationEdinburgh Napier Universityen_UK
dc.identifier.isiWOS:000635246800001en_UK
dc.identifier.scopusid2-s2.0-85103038477en_UK
dc.identifier.wtid1711415en_UK
dc.contributor.orcid0000-0003-1712-9014en_UK
dc.contributor.orcid0000-0001-8651-5117en_UK
dc.date.accepted2021-03-05en_UK
dcterms.dateAccepted2021-03-05en_UK
dc.date.filedepositdate2021-03-09en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorAhmed, Rami|en_UK
local.rioxx.authorGogate, Mandar|0000-0003-1712-9014en_UK
local.rioxx.authorTahir, Ahsen|en_UK
local.rioxx.authorDashtipour, Kia|0000-0001-8651-5117en_UK
local.rioxx.authorAl-tamimi, Bassam|en_UK
local.rioxx.authorHawalah, Ahmad|en_UK
local.rioxx.authorEl-Affendi, Mohammed A|en_UK
local.rioxx.authorHussain, Amir|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2021-03-13en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2021-03-13en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2021-03-13|en_UK
local.rioxx.filenameentropy-23-00340-v2.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1099-4300en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
entropy-23-00340-v2.pdfFulltext - Published Version1 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.