Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32381
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDashtipour, Kiaen_UK
dc.contributor.authorGogate, Mandaren_UK
dc.contributor.authorCambria, Eriken_UK
dc.contributor.authorHussain, Amiren_UK
dc.date.accessioned2021-03-09T01:00:45Z-
dc.date.available2021-03-09T01:00:45Z-
dc.date.issued2021-10-07en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32381-
dc.description.abstractMost recent works on sentiment analysis have exploited the text modality. However, millions of hours of video recordings posted on social media platforms everyday hold vital unstructured information that can be exploited to more effectively gauge public perception. Multimodal sentiment analysis offers an innovative solution to computationally understand and harvest sentiments from videos by contextually exploiting audio, visual and textual cues. In this paper, we, firstly, present a first of its kind Persian multimodal dataset comprising more than 800 utterances, as a benchmark resource for researchers to evaluate multimodal sentiment analysis approaches in Persian language. Secondly, we present a novel context-aware multimodal sentiment analysis framework, that simultaneously exploits acoustic, visual and textual cues to more accurately determine the expressed sentiment. We employ both decision-level (late) and feature-level (early) fusion methods to integrate affective cross-modal information. Experimental results demonstrate that the contextual integration of multimodal features such as textual, acoustic and visual features deliver better performance (91.39%) compared to unimodal features (89.24%).en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationDashtipour K, Gogate M, Cambria E & Hussain A (2021) A Novel Context-Aware Multimodal Framework for Persian Sentiment Analysis. Neurocomputing, 457, pp. 377-388. https://doi.org/10.1016/j.neucom.2021.02.020en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Dashtipour K, Gogate M, Cambria E & Hussain A (2021) A Novel Context-Aware Multimodal Framework for Persian Sentiment Analysis. Neurocomputing, 457, pp. 377-388. https://doi.org/10.1016/j.neucom.2021.02.020 © 2021, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectMultimodal Sentiment Analysisen_UK
dc.subjectPersian Sentiment Analysisen_UK
dc.titleA Novel Context-Aware Multimodal Framework for Persian Sentiment Analysisen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2022-03-03en_UK
dc.rights.embargoreason[Persian_MMD.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1016/j.neucom.2021.02.020en_UK
dc.citation.jtitleNeurocomputingen_UK
dc.citation.issn0925-2312en_UK
dc.citation.volume457en_UK
dc.citation.spage377en_UK
dc.citation.epage388en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailkia.dashtipour@stir.ac.uken_UK
dc.citation.date02/03/2021en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationEdinburgh Napier Universityen_UK
dc.contributor.affiliationNanyang Technological Universityen_UK
dc.contributor.affiliationEdinburgh Napier Universityen_UK
dc.identifier.isiWOS:000689715000011en_UK
dc.identifier.scopusid2-s2.0-85107619491en_UK
dc.identifier.wtid1711407en_UK
dc.contributor.orcid0000-0001-8651-5117en_UK
dc.contributor.orcid0000-0003-1712-9014en_UK
dc.date.accepted2021-02-09en_UK
dcterms.dateAccepted2021-02-09en_UK
dc.date.filedepositdate2021-03-08en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorDashtipour, Kia|0000-0001-8651-5117en_UK
local.rioxx.authorGogate, Mandar|0000-0003-1712-9014en_UK
local.rioxx.authorCambria, Erik|en_UK
local.rioxx.authorHussain, Amir|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2022-03-03en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2022-03-02en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2022-03-03|en_UK
local.rioxx.filenamePersian_MMD.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0925-2312en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Persian_MMD.pdfFulltext - Accepted Version3.24 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.