Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32312
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrownlee, Alexanderen_UK
dc.contributor.authorAdair, Jasonen_UK
dc.contributor.authorHaraldsson, Saemunduren_UK
dc.contributor.authorJabbo, Johnen_UK
dc.date.accessioned2021-02-24T01:07:34Z-
dc.date.available2021-02-24T01:07:34Z-
dc.date.issued2021en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32312-
dc.description.abstractMachine learning accounts for considerable global electricity demand and resulting environmental impact, as training a large deep-learning model produces 284 000kgs of the greenhouse gas carbon dioxide. In recent years, search-based approaches have begun to explore improving software to consume less energy. Machine learning is a particularly strong candidate for this because it is possible to trade off functionality (accu-racy) against energy consumption, whereas with many programs functionality is simply a pass-or-fail constraint. We use a grid search to explore hyperparameter configurations for a multilayer perceptron on five classification data sets, considering trade-offs of classification accuracy against training or inference energy. On one data set, we show that 77% of energy consumption for inference can saved by reducing accuracy from 94.3% to 93.2%. Energy for training can also be reduced by 30-50% with minimal loss of accuracy. We also find that structural parameters like hidden layer size is a major driver of the energy-accuracy trade-off, but there is some evidence that non-structural hyperparameters influence the trade-off too. We also show that a search-based approach has the potential to identify these trade-offs more efficiently than the grid search.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationBrownlee A, Adair J, Haraldsson S & Jabbo J (2021) Exploring the Accuracy - Energy Trade-off in Machine Learning. In: 2021 IEEE/ACM International Workshop on Genetic Improvement (GI). Genetic Improvement Workshop at 43rd International Conference on Software Engineering, Madrid, Spain, 30.05.2021-30.05.2021. Piscataway, NJ: IEEE. https://doi.org/10.1109/GI52543.2021.00011en_UK
dc.relation.urihttp://hdl.handle.net/11667/173en_UK
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.titleExploring the Accuracy - Energy Trade-off in Machine Learningen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2021-02-23en_UK
dc.identifier.doi10.1109/GI52543.2021.00011en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailalexander.brownlee@stir.ac.uken_UK
dc.citation.btitle2021 IEEE/ACM International Workshop on Genetic Improvement (GI)en_UK
dc.citation.conferencedates2021-05-30 - 2021-05-30en_UK
dc.citation.conferencelocationMadrid, Spainen_UK
dc.citation.conferencenameGenetic Improvement Workshop at 43rd International Conference on Software Engineeringen_UK
dc.citation.date07/07/2021en_UK
dc.citation.isbn978-1-6654-4466-8en_UK
dc.publisher.addressPiscataway, NJen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-85113235385en_UK
dc.identifier.wtid1707726en_UK
dc.contributor.orcid0000-0003-2892-5059en_UK
dc.contributor.orcid0000-0003-0395-5884en_UK
dc.date.accepted2021-02-23en_UK
dcterms.dateAccepted2021-02-23en_UK
dc.date.filedepositdate2021-02-23en_UK
dc.subject.tagComputational Intelligence and Machine Learningen_UK
dc.subject.tagOptimisationen_UK
dc.subject.tagSearch Based Software Engineeringen_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorBrownlee, Alexander|0000-0003-2892-5059en_UK
local.rioxx.authorAdair, Jason|en_UK
local.rioxx.authorHaraldsson, Saemundur|0000-0003-0395-5884en_UK
local.rioxx.authorJabbo, John|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2021-02-23en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2021-02-23|en_UK
local.rioxx.filenameGI2021_Machine_Learning_Energy.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-6654-4466-8en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
GI2021_Machine_Learning_Energy.pdfFulltext - Accepted Version751.11 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.