Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32275
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHou, Yuanen_UK
dc.contributor.authorCuyt, Annieen_UK
dc.contributor.authorLee, Wen-Shinen_UK
dc.contributor.authorBhowmik, Deepayanen_UK
dc.date.accessioned2021-02-13T01:07:09Z-
dc.date.available2021-02-13T01:07:09Z-
dc.date.issued2021en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32275-
dc.description.abstractDecomposition is integral to most image processing algorithms and often required in texture analysis. We present a new approach using a recent 2-dimensional exponential analysis technique. Exponential analysis offers the advantage of sparsity in the model and continuity in the parameters. This results in a much more compact representation of textures when compared to traditional Fourier or wavelet transform techniques. Our experiments include synthetic as well as real texture images from standard benchmark datasets. The results outperform FFT in representing texture patterns with significantly fewer terms while retaining RMSE values after reconstruction. The underlying periodic complex exponential model works best for texture patterns that are homogeneous. We demonstrate the usefulness of the method in two common vision processing application examples, namely texture classification and defect detection.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationHou Y, Cuyt A, Lee W & Bhowmik D (2021) Decomposing Textures Using Exponential Analysis. In: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Ontario, Canada, 06.06.2021-11.06.2021. Piscataway: IEEE. https://doi.org/10.1109/ICASSP39728.2021.9413909en_UK
dc.rights© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectExponential analysisen_UK
dc.subjectmultivariateen_UK
dc.subjectimage decompositionen_UK
dc.subjecttexture analysisen_UK
dc.titleDecomposing Textures Using Exponential Analysisen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/ICASSP39728.2021.9413909en_UK
dc.citation.issn2379-190Xen_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emaildeepayan.bhowmik@stir.ac.uken_UK
dc.citation.btitleICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)en_UK
dc.citation.conferencedates2021-06-06 - 2021-06-11en_UK
dc.citation.conferencelocationToronto, Ontario, Canadaen_UK
dc.citation.conferencenameIEEE International Conference on Acoustics, Speech and Signal Processingen_UK
dc.citation.date13/05/2021en_UK
dc.citation.isbn978-1-7281-7606-2en_UK
dc.citation.isbn978-1-7281-7605-5en_UK
dc.publisher.addressPiscatawayen_UK
dc.contributor.affiliationUniversity of Antwerpen_UK
dc.contributor.affiliationUniversity of Antwerpen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.wtid1704141en_UK
dc.contributor.orcid0000-0002-2808-3739en_UK
dc.contributor.orcid0000-0003-1762-1578en_UK
dc.date.accepted2021-01-29en_UK
dcterms.dateAccepted2021-01-29en_UK
dc.date.filedepositdate2021-02-09en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorHou, Yuan|en_UK
local.rioxx.authorCuyt, Annie|en_UK
local.rioxx.authorLee, Wen-Shin|0000-0002-2808-3739en_UK
local.rioxx.authorBhowmik, Deepayan|0000-0003-1762-1578en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2021-02-12en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2021-02-12|en_UK
local.rioxx.filenameICASSP2021_Exponential_texture_analysis_dbhowmik.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-7281-7605-5en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
ICASSP2021_Exponential_texture_analysis_dbhowmik.pdfFulltext - Accepted Version10.96 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.