Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32250
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOsco, Lucas Pradoen_UK
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorMarques Ramos, Ana Paulaen_UK
dc.contributor.authorFaita Pinheiro, Mayara Maezanoen_UK
dc.contributor.authorFuruya, Danielle Elis Garciaen_UK
dc.contributor.authorGonçalves, Wesley Nunesen_UK
dc.contributor.authorde Castro Jorge, Lucio Andreen_UK
dc.contributor.authorMarcato Junior, Joseen_UK
dc.contributor.authordos Santos, Jefersson Alexen_UK
dc.date.accessioned2021-02-06T01:21:18Z-
dc.date.available2021-02-06T01:21:18Z-
dc.date.issued2021-08en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32250-
dc.description.abstractAccurately mapping farmlands is important for precision agriculture practices. Unmanned aerial vehicles (UAV) embedded with multispectral cameras are commonly used to map plants in agricultural landscapes. However, separating plantation fields from the remaining objects in a multispectral scene is a difficult task for traditional algorithms. In this connection, deep learning methods that perform semantic segmentation could help improve the overall outcome. In this study, state-of-the-art deep learning methods to semantic segment citrus-trees in multispectral images were evaluated. For this purpose, a multispectral camera that operates at the green (530–570 nm), red (640–680 nm), red-edge (730–740 nm) and also near-infrared (770–810 nm) spectral regions was used. The performance of the following five state-of-the-art pixelwise methods were evaluated: fully convolutional network (FCN), U-Net, SegNet, dynamic dilated convolution network (DDCN) and DeepLabV3 + . The results indicated that the evaluated methods performed similarly in the proposed task, returning F1-Scores between 94.00% (FCN and U-Net) and 94.42% (DDCN). It was also determined the inference time needed per area and, although the DDCN method was slower, based on a qualitative analysis, it performed better in highly shadow-affected areas. This study demonstrated that the semantic segmentation of citrus orchards is highly achievable with deep neural networks. The state-of-the-art deep learning methods investigated here proved to be equally suitable to solve this task, providing fast solutions with inference time varying from 0.98 to 4.36 min per hectare. This approach could be incorporated into similar research, and contribute to decision-making and accurate mapping of plantation fields.en_UK
dc.language.isoenen_UK
dc.publisherBMCen_UK
dc.relationOsco LP, Nogueira K, Marques Ramos AP, Faita Pinheiro MM, Furuya DEG, Gonçalves WN, de Castro Jorge LA, Marcato Junior J & dos Santos JA (2021) Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery. <i>Precision Agriculture</i>, 22 (4), pp. 1171-1188. https://doi.org/10.1007/s11119-020-09777-5en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. This is a post-peer-review, pre-copyedit version of an article published in Precision Agriculture. The final authenticated version is available online at: https://doi.org/10.1007/s11119-020-09777-5en_UK
dc.subjectConvolutional neural networken_UK
dc.subjectRemote sensingen_UK
dc.subjectThematic mapen_UK
dc.titleSemantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imageryen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2022-01-03en_UK
dc.rights.embargoreason[SemanticSeg_Laranja.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1007/s11119-020-09777-5en_UK
dc.citation.jtitlePrecision Agricultureen_UK
dc.citation.issn1573-1618en_UK
dc.citation.issn1385-2256en_UK
dc.citation.volume22en_UK
dc.citation.issue4en_UK
dc.citation.spage1171en_UK
dc.citation.epage1188en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.author.emailkeiller.nogueira@stir.ac.uken_UK
dc.citation.date02/01/2021en_UK
dc.contributor.affiliationFederal University of Mato Grosso do Sulen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Western São Paulo (UNOESTE)en_UK
dc.contributor.affiliationUniversity of Western São Paulo (UNOESTE)en_UK
dc.contributor.affiliationUniversity of Western São Paulo (UNOESTE)en_UK
dc.contributor.affiliationFederal University of Mato Grosso do Sulen_UK
dc.contributor.affiliationEmbrapa Brazilian Agricultural Research Corporationen_UK
dc.contributor.affiliationFederal University of Mato Grosso do Sulen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000604197700004en_UK
dc.identifier.scopusid2-s2.0-85098700063en_UK
dc.identifier.wtid1702596en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.contributor.orcid0000-0002-8889-1586en_UK
dc.date.accepted2020-12-04en_UK
dcterms.dateAccepted2020-12-04en_UK
dc.date.filedepositdate2021-02-05en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorOsco, Lucas Prado|en_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authorMarques Ramos, Ana Paula|en_UK
local.rioxx.authorFaita Pinheiro, Mayara Maezano|en_UK
local.rioxx.authorFuruya, Danielle Elis Garcia|en_UK
local.rioxx.authorGonçalves, Wesley Nunes|en_UK
local.rioxx.authorde Castro Jorge, Lucio Andre|en_UK
local.rioxx.authorMarcato Junior, Jose|en_UK
local.rioxx.authordos Santos, Jefersson Alex|0000-0002-8889-1586en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.freetoreaddate2022-01-03en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2022-01-02en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2022-01-03|en_UK
local.rioxx.filenameSemanticSeg_Laranja.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1573-1618en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
SemanticSeg_Laranja.pdfFulltext - Accepted Version13.14 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.