Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/32241
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liaqat, Sidrah | en_UK |
dc.contributor.author | Dashtipour, Kia | en_UK |
dc.contributor.author | Arshad, Kamran | en_UK |
dc.contributor.author | Assaleh, Khaled | en_UK |
dc.contributor.author | Ramzan, Naeem | en_UK |
dc.date.accessioned | 2021-02-05T01:03:31Z | - |
dc.date.available | 2021-02-05T01:03:31Z | - |
dc.date.issued | 2021-04 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/32241 | - |
dc.description.abstract | The posture detection received lots of attention in the fields of human sensing and artificial intelligence. Posture detection can be used for the monitoring health status of elderly remotely by identifying their postures such as standing, sitting and walking. Most of the current studies used traditional machine learning classifiers to identify the posture. However, these methods do not perform well to detect the postures accurately. Therefore, in this study, we proposed a novel hybrid approach based on machine learning classifiers (i. e., support vector machine (SVM), logistic regression (KNN), decision tree, Naive Bayes, random forest, Linear discrete analysis and Quadratic discrete analysis) and deep learning classifiers (i. e., 1D-convolutional neural network (1D-CNN), 2D-convolutional neural network (2D-CNN), LSTM and bidirectional LSTM) to identify posture detection. The proposed hybrid approach uses prediction of machine learning (ML) and deep learning (DL) to improve the performance of ML and DL algorithms. The experimental results on widely benchmark dataset are shown and results achieved an accuracy of more than 98%. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_UK |
dc.relation | Liaqat S, Dashtipour K, Arshad K, Assaleh K & Ramzan N (2021) A hybrid posture detection framework: Integrating machine learning and deep neural networks. IEEE Sensors Journal, 21 (1), pp. 9515-9522. https://doi.org/10.1109/jsen.2021.3055898 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | Posture detection | en_UK |
dc.subject | Hybrid Approach | en_UK |
dc.subject | Deep Learning | en_UK |
dc.subject | Machine Learning | en_UK |
dc.title | A hybrid posture detection framework: Integrating machine learning and deep neural networks | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 2999-12-31 | en_UK |
dc.rights.embargoreason | [Liaqat-etal-IEEESJ-2021.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1109/jsen.2021.3055898 | en_UK |
dc.citation.jtitle | IEEE Sensors Journal | en_UK |
dc.citation.issn | 1558-1748 | en_UK |
dc.citation.issn | 1530-437X | en_UK |
dc.citation.volume | 21 | en_UK |
dc.citation.issue | 1 | en_UK |
dc.citation.spage | 9515 | en_UK |
dc.citation.epage | 9522 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.author.email | kia.dashtipour@glasgow.ac.uk | en_UK |
dc.citation.date | 01/02/2021 | en_UK |
dc.contributor.affiliation | University of the West of Scotland | en_UK |
dc.contributor.affiliation | University of Glasgow | en_UK |
dc.contributor.affiliation | Ajman University | en_UK |
dc.contributor.affiliation | Ajman University | en_UK |
dc.contributor.affiliation | University of the West of Scotland | en_UK |
dc.identifier.isi | WOS:000626579600078 | en_UK |
dc.identifier.scopusid | 2-s2.0-85100721955 | en_UK |
dc.identifier.wtid | 1702466 | en_UK |
dc.contributor.orcid | 0000-0001-8651-5117 | en_UK |
dc.date.accepted | 2021-02-01 | en_UK |
dcterms.dateAccepted | 2021-02-01 | en_UK |
dc.date.filedepositdate | 2021-02-04 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Liaqat, Sidrah| | en_UK |
local.rioxx.author | Dashtipour, Kia|0000-0001-8651-5117 | en_UK |
local.rioxx.author | Arshad, Kamran| | en_UK |
local.rioxx.author | Assaleh, Khaled| | en_UK |
local.rioxx.author | Ramzan, Naeem| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2271-01-02 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | Liaqat-etal-IEEESJ-2021.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1558-1748 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Liaqat-etal-IEEESJ-2021.pdf | Fulltext - Published Version | 2.36 MB | Adobe PDF | Under Permanent Embargo Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.