Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32241
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiaqat, Sidrahen_UK
dc.contributor.authorDashtipour, Kiaen_UK
dc.contributor.authorArshad, Kamranen_UK
dc.contributor.authorAssaleh, Khaleden_UK
dc.contributor.authorRamzan, Naeemen_UK
dc.date.accessioned2021-02-05T01:03:31Z-
dc.date.available2021-02-05T01:03:31Z-
dc.date.issued2021-04en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32241-
dc.description.abstractThe posture detection received lots of attention in the fields of human sensing and artificial intelligence. Posture detection can be used for the monitoring health status of elderly remotely by identifying their postures such as standing, sitting and walking. Most of the current studies used traditional machine learning classifiers to identify the posture. However, these methods do not perform well to detect the postures accurately. Therefore, in this study, we proposed a novel hybrid approach based on machine learning classifiers (i. e., support vector machine (SVM), logistic regression (KNN), decision tree, Naive Bayes, random forest, Linear discrete analysis and Quadratic discrete analysis) and deep learning classifiers (i. e., 1D-convolutional neural network (1D-CNN), 2D-convolutional neural network (2D-CNN), LSTM and bidirectional LSTM) to identify posture detection. The proposed hybrid approach uses prediction of machine learning (ML) and deep learning (DL) to improve the performance of ML and DL algorithms. The experimental results on widely benchmark dataset are shown and results achieved an accuracy of more than 98%.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationLiaqat S, Dashtipour K, Arshad K, Assaleh K & Ramzan N (2021) A hybrid posture detection framework: Integrating machine learning and deep neural networks. IEEE Sensors Journal, 21 (1), pp. 9515-9522. https://doi.org/10.1109/jsen.2021.3055898en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectPosture detectionen_UK
dc.subjectHybrid Approachen_UK
dc.subjectDeep Learningen_UK
dc.subjectMachine Learningen_UK
dc.titleA hybrid posture detection framework: Integrating machine learning and deep neural networksen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[Liaqat-etal-IEEESJ-2021.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1109/jsen.2021.3055898en_UK
dc.citation.jtitleIEEE Sensors Journalen_UK
dc.citation.issn1558-1748en_UK
dc.citation.issn1530-437Xen_UK
dc.citation.volume21en_UK
dc.citation.issue1en_UK
dc.citation.spage9515en_UK
dc.citation.epage9522en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailkia.dashtipour@glasgow.ac.uken_UK
dc.citation.date01/02/2021en_UK
dc.contributor.affiliationUniversity of the West of Scotlanden_UK
dc.contributor.affiliationUniversity of Glasgowen_UK
dc.contributor.affiliationAjman Universityen_UK
dc.contributor.affiliationAjman Universityen_UK
dc.contributor.affiliationUniversity of the West of Scotlanden_UK
dc.identifier.isiWOS:000626579600078en_UK
dc.identifier.scopusid2-s2.0-85100721955en_UK
dc.identifier.wtid1702466en_UK
dc.contributor.orcid0000-0001-8651-5117en_UK
dc.date.accepted2021-02-01en_UK
dcterms.dateAccepted2021-02-01en_UK
dc.date.filedepositdate2021-02-04en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorLiaqat, Sidrah|en_UK
local.rioxx.authorDashtipour, Kia|0000-0001-8651-5117en_UK
local.rioxx.authorArshad, Kamran|en_UK
local.rioxx.authorAssaleh, Khaled|en_UK
local.rioxx.authorRamzan, Naeem|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2271-01-02en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameLiaqat-etal-IEEESJ-2021.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1558-1748en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Liaqat-etal-IEEESJ-2021.pdfFulltext - Published Version2.36 MBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.