Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32232
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMachado, Gabrielen_UK
dc.contributor.authorFerreira, Edemiren_UK
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorOliveira, Hugoen_UK
dc.contributor.authorBrito, Matheusen_UK
dc.contributor.authorGama, Pedro Henrique Targinoen_UK
dc.contributor.authorSantos, Jefersson Alex dosen_UK
dc.date.accessioned2021-02-05T01:00:22Z-
dc.date.available2021-02-05T01:00:22Z-
dc.date.issued2021en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32232-
dc.description.abstractIt is undeniable that aerial/satellite images can provide useful information for a large variety of tasks. But, since these images are always taken from above, some applications can benefit from complementary information provided by other perspective views of the scene, such as ground-level images. Despite a large number of public repositories for both georeferenced photographs and aerial images, there is a lack of benchmark datasets that allow the development of approaches that exploit the benefits and complementarity of aerial/ground imagery. In this article, we present two new publicly available datasets named AiRound and CV-BrCT. The first one contains triplets of images from the same geographic coordinate with different perspectives of view extracted from various places around the world. Each triplet is composed of an aerial RGB image, a ground-level perspective image, and a Sentinel-2 sample. The second dataset contains pairs of aerial and street-level images extracted from southeast Brazil. We design an extensive set of experiments concerning multiview scene classification, using early and late fusion. Such experiments were conducted to show that image classification can be enhanced using multiview data.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineersen_UK
dc.relationMachado G, Ferreira E, Nogueira K, Oliveira H, Brito M, Gama PHT & Santos JAd (2021) AiRound and CV-BrCT: Novel Multiview Datasets for Scene Classification. <i>IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing</i>, 14, pp. 488-503. https://doi.org/10.1109/JSTARS.2020.3033424en_UK
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectData fusionen_UK
dc.subjectdataseten_UK
dc.subjectdeep learningen_UK
dc.subjectfeature fusionen_UK
dc.subjectmultimodal machine learningen_UK
dc.subjectremote sensingen_UK
dc.titleAiRound and CV-BrCT: Novel Multiview Datasets for Scene Classificationen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/JSTARS.2020.3033424en_UK
dc.citation.jtitleIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensingen_UK
dc.citation.issn2151-1535en_UK
dc.citation.issn1939-1404en_UK
dc.citation.volume14en_UK
dc.citation.spage488en_UK
dc.citation.epage503en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.citation.date23/10/2020en_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000607413900017en_UK
dc.identifier.scopusid2-s2.0-85099346545en_UK
dc.identifier.wtid1702581en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.contributor.orcid0000-0002-8889-1586en_UK
dc.date.accepted2020-10-17en_UK
dcterms.dateAccepted2020-10-17en_UK
dc.date.filedepositdate2021-02-04en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorMachado, Gabriel|en_UK
local.rioxx.authorFerreira, Edemir|en_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authorOliveira, Hugo|en_UK
local.rioxx.authorBrito, Matheus|en_UK
local.rioxx.authorGama, Pedro Henrique Targino|en_UK
local.rioxx.authorSantos, Jefersson Alex dos|0000-0002-8889-1586en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.freetoreaddate2021-02-04en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2021-02-04|en_UK
local.rioxx.filename09238485.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2151-1535en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
09238485.pdfFulltext - Published Version4.51 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.