Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32214
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDatta, Avirajen_UK
dc.contributor.authorMaharaj, Savitrien_UK
dc.contributor.authorPrabhu, G Nagendraen_UK
dc.contributor.authorBhowmik, Deepayanen_UK
dc.contributor.authorMarino, Armandoen_UK
dc.contributor.authorAkbari, Vahiden_UK
dc.contributor.authorRupavatharam, Srikanthen_UK
dc.contributor.authorSujeetha, J Alice Ren_UK
dc.contributor.authorAnantrao, Girish Gen_UK
dc.contributor.authorPoduvattil, Vidhu Ken_UK
dc.contributor.authorKumar, Sauraven_UK
dc.contributor.authorKleczkowski, Adamen_UK
dc.date.accessioned2021-01-29T01:30:41Z-
dc.date.available2021-01-29T01:30:41Z-
dc.date.issued2021-01-28en_UK
dc.identifier.other631338en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32214-
dc.description.abstractWater hyacinth (Pontederia crassipes, also referred to as Eicchornia crassipes) is one of the most invasive weed species in the world, causing significant adverse economic and ecological impacts, particularly in tropical and sub-tropical regions. Large scale real-time monitoring of areas of chronic infestation is critical to formulate effective control strategies for this fast spreading weed species. Assessment of revenue generation potential of the harvested water hyacinth biomass also requires enhanced understanding to estimate the biomass yield potential for a given water body. Modern remote sensing technologies can greatly enhance our capacity to understand, monitor and estimate water hyacinth infestation within inland as well as coastal freshwater bodies. Readily available satellite imagery with high spectral, temporal and spatial resolution, along with conventional and modern machine learning techniques for automated image analysis, can enable discrimination of water hyacinth infestation from other floating or submerged vegetation. Remote sensing can potentially be complemented with an array of other technology-based methods, including aerial surveys, ground-level sensors, and citizen science, to provide comprehensive, timely and accurate monitoring. This review discusses the latest developments in the use of remote sensing and other technologies to monitor water hyacinth infestation, and proposes a novel, multi-modal approach that combines the strengths of the different methods.en_UK
dc.language.isoenen_UK
dc.publisherFrontiers Mediaen_UK
dc.relationDatta A, Maharaj S, Prabhu GN, Bhowmik D, Marino A, Akbari V, Rupavatharam S, Sujeetha JAR, Anantrao GG, Poduvattil VK, Kumar S & Kleczkowski A (2021) Monitoring the spread of water hyacinth (Pontederia crassipes): challenges and future developments. Frontiers in Ecology and Evolution, 9, Art. No.: 631338. Biogeography and Macroecology, Invaders on the Horizon! Scanning the Future of Invasion Science and Management. https://doi.org/10.3389/fevo.2021.631338en_UK
dc.relation.ispartofseriesBiogeography and Macroecology, Invaders on the Horizon! Scanning the Future of Invasion Science and Managementen_UK
dc.rights© 2021 Datta, Maharaj, Prabhu, Bhowmik, Marino, Akbari, Rupavatharam, Sujeetha, Anantrao, Poduvattil, Kumar and Kleczkowski. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY - https://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectremote sensingen_UK
dc.subjectSynthetic Aperture Radaren_UK
dc.subjectGround sensor networken_UK
dc.subjectUnmanned Aerial Vehicleen_UK
dc.subjectcitizen scienceen_UK
dc.subjectmachine learningen_UK
dc.subjectaquatic weedsen_UK
dc.subjectwetlandsen_UK
dc.titleMonitoring the spread of water hyacinth (Pontederia crassipes): challenges and future developmentsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3389/fevo.2021.631338en_UK
dc.citation.jtitleFrontiers in Ecology and Evolutionen_UK
dc.citation.issn2296-701Xen_UK
dc.citation.volume9en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderRoyal Academy of Engineeringen_UK
dc.author.emailsavitri.maharaj@stir.ac.uken_UK
dc.citation.date28/01/2021en_UK
dc.contributor.affiliationInternational Crops Research Institute for the Semi-Arid Tropicsen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationSanatana Dharma College - Centre for Research on Aquatic Resourcesen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationInternational Crops Research Institute for the Semi-Arid Tropicsen_UK
dc.contributor.affiliationNational Institute of Plant Health Management (India)en_UK
dc.contributor.affiliationNational Institute of Plant Health Management (India)en_UK
dc.contributor.affiliationNational Institute of Plant Health Management (India)en_UK
dc.contributor.affiliationMinistry of Science and Technology, Indiaen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.identifier.isiWOS:000616988000001en_UK
dc.identifier.scopusid2-s2.0-85100994299en_UK
dc.identifier.wtid1699303en_UK
dc.contributor.orcid0000-0002-0674-6044en_UK
dc.contributor.orcid0000-0003-1762-1578en_UK
dc.contributor.orcid0000-0002-4531-3102en_UK
dc.date.accepted2021-01-04en_UK
dcterms.dateAccepted2021-01-04en_UK
dc.date.filedepositdate2021-01-28en_UK
dc.relation.funderprojectMultimodal data analysis for monitoring invasive aquatic weeds in Indiaen_UK
dc.relation.funderrefFF\1920\1\37en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorDatta, Aviraj|en_UK
local.rioxx.authorMaharaj, Savitri|0000-0002-0674-6044en_UK
local.rioxx.authorPrabhu, G Nagendra|en_UK
local.rioxx.authorBhowmik, Deepayan|0000-0003-1762-1578en_UK
local.rioxx.authorMarino, Armando|0000-0002-4531-3102en_UK
local.rioxx.authorAkbari, Vahid|en_UK
local.rioxx.authorRupavatharam, Srikanth|en_UK
local.rioxx.authorSujeetha, J Alice R|en_UK
local.rioxx.authorAnantrao, Girish G|en_UK
local.rioxx.authorPoduvattil, Vidhu K|en_UK
local.rioxx.authorKumar, Saurav|en_UK
local.rioxx.authorKleczkowski, Adam|en_UK
local.rioxx.projectFF\1920\1\37|Royal Academy of Engineering|http://dx.doi.org/10.13039/501100000287en_UK
local.rioxx.freetoreaddate2021-01-28en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2021-01-28|en_UK
local.rioxx.filenamefevo-09-631338.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2296-701Xen_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
fevo-09-631338.pdfFulltext - Published Version467.28 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.