Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32112
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHoepner, Andreas G Fen_UK
dc.contributor.authorMcMillan, Daviden_UK
dc.contributor.authorVivian, Andrewen_UK
dc.contributor.authorWese Simen, Chardinen_UK
dc.date.accessioned2020-12-23T01:00:14Z-
dc.date.available2020-12-23T01:00:14Z-
dc.date.issued2021en_UK
dc.identifier.urihttp://hdl.handle.net/1893/32112-
dc.description.abstractAlthough machine learning is frequently associated with neural networks, it also comprises econometric regression approaches and other statistical techniques whose accuracy enhances with increasing observation. What constitutes high quality machine learning is yet unclear though. Proponents of deep learning (i.e. neural networks) value computational efficiency over human interpretability and tolerate the ‘black box’ appeal of their algorithms, whereas proponents of explainable artificial intelligence (xai) employ traceable ‘white box’ methods (e.g. regressions) to enhance explainability to human decision makers. We extend Brooks et al.’s [2019. ‘Financial Data Science: The Birth of a New Financial Research Paradigm Complementing Econometrics?’ European Journal of Finance 25 (17): 1627–36.] work on significance and relevance as assessment critieria in econometrics and financial data science to contribute to this debate. Specifically, we identify explainability as the Achilles heel of classic machine learning approaches such as neural networks, which are not fully replicable, lack transparency and traceability and therefore do not permit any attempts to establish causal inference. We conclude by suggesting routes for future research to advance the design and efficiency of ‘white box’ algorithms.en_UK
dc.language.isoenen_UK
dc.publisherTaylor & Francis (Routledge)en_UK
dc.relationHoepner AGF, McMillan D, Vivian A & Wese Simen C (2021) Significance, relevance and explainability in the machine learning age: an econometrics and financial data science perspective. European Journal of Finance, 27 (1-2), pp. 1-7. https://doi.org/10.1080/1351847X.2020.1847725en_UK
dc.rights© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectexplainabilityen_UK
dc.subjectexplainable artificial intelligence (xai)en_UK
dc.subjectneural networksen_UK
dc.subjectrelevanceen_UK
dc.subjectregressionsen_UK
dc.subjectsignificanceen_UK
dc.titleSignificance, relevance and explainability in the machine learning age: an econometrics and financial data science perspectiveen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2020-12-22en_UK
dc.identifier.doi10.1080/1351847X.2020.1847725en_UK
dc.citation.jtitleEuropean Journal of Financeen_UK
dc.citation.issn1466-4364en_UK
dc.citation.issn1351-847Xen_UK
dc.citation.volume27en_UK
dc.citation.issue1-2en_UK
dc.citation.spage1en_UK
dc.citation.epage7en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEuropean Commission (Horizon 2020)en_UK
dc.author.emaildavid.mcmillan@stir.ac.uken_UK
dc.citation.date03/12/2020en_UK
dc.contributor.affiliationUniversity College Dublin (UCD)en_UK
dc.contributor.affiliationAccounting & Financeen_UK
dc.contributor.affiliationLoughborough Universityen_UK
dc.contributor.affiliationUniversity of Liverpoolen_UK
dc.identifier.isiWOS:000596196700001en_UK
dc.identifier.scopusid2-s2.0-85097053428en_UK
dc.identifier.wtid1692600en_UK
dc.contributor.orcid0000-0002-5891-4193en_UK
dc.date.accepted2020-10-26en_UK
dcterms.dateAccepted2020-10-26en_UK
dc.date.filedepositdate2020-12-22en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorHoepner, Andreas G F|en_UK
local.rioxx.authorMcMillan, David|0000-0002-5891-4193en_UK
local.rioxx.authorVivian, Andrew|en_UK
local.rioxx.authorWese Simen, Chardin|en_UK
local.rioxx.projectProject ID unknown|European Commission (Horizon 2020)|en_UK
local.rioxx.freetoreaddate2020-12-22en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2020-12-22|en_UK
local.rioxx.filenameHoepner-etal-EJF-2021.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1466-4364en_UK
Appears in Collections:Accounting and Finance Journal Articles

Files in This Item:
File Description SizeFormat 
Hoepner-etal-EJF-2021.pdfFulltext - Published Version1.27 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.