Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/32059
Appears in Collections:Psychology Journal Articles
Peer Review Status: Refereed
Title: Guidelines for Data Acquisition, Quality and Curation for Observational Research Designs (DAQCORD)
Author(s): Ercole, Ari
Brinck, Vibeke
George, Pradeep
Hicks, Ramona
Huijben, Jilske
Jarrett, Michael
Vassar, Mary
Wilson, Lindsay
Keywords: Data quality
curation
observational studies
Delphi process
design
reporting
Issue Date: Aug-2020
Date Deposited: 4-Dec-2020
Citation: Ercole A, Brinck V, George P, Hicks R, Huijben J, Jarrett M, Vassar M & Wilson L (2020) Guidelines for Data Acquisition, Quality and Curation for Observational Research Designs (DAQCORD). Journal of Clinical and Translational Science, 4 (4), pp. 354-359. https://doi.org/10.1017/cts.2020.24
Abstract: Background: High-quality data are critical to the entire scientific enterprise, yet the complexity and effort involved in data curation are vastly under-appreciated. This is especially true for large observational, clinical studies because of the amount of multimodal data that is captured and the opportunity for addressing numerous research questions through analysis, either alone or in combination with other data sets. However, a lack of details concerning data curation methods can result in unresolved questions about the robustness of the data, its utility for addressing specific research questions or hypotheses and how to interpret the results. We aimed to develop a framework for the design, documentation and reporting of data curation methods in order to advance the scientific rigour, reproducibility and analysis of the data. Methods: Forty-six experts participated in a modified Delphi process to reach consensus on indicators of data curation that could be used in the design and reporting of studies. Results: We identified 46 indicators that are applicable to the design, training/testing, run time and post-collection phases of studies. Conclusion: The Data Acquisition, Quality and Curation for Observational Research Designs (DAQCORD) Guidelines are the first comprehensive set of data quality indicators for large observational studies. They were developed around the needs of neuroscience projects, but we believe they are relevant and generalisable, in whole or in part, to other fields of health research, and also to smaller observational studies and preclinical research. The DAQCORD Guidelines provide a framework for achieving high-quality data; a cornerstone of health research.
DOI Link: 10.1017/cts.2020.24
Rights: This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Licence URL(s): http://creativecommons.org/licenses/by/4.0/

Files in This Item:
File Description SizeFormat 
Ercole-etal-JCTS-2020.pdfFulltext - Published Version377.7 kBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.