Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31971
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data
Author(s): Aguirre-Gutiérrez, Jesús
Rifai, Sami
Shenkin, Alexander
Oliveras, Imma
Bentley, Lisa Patrick
Svátek, Martin
Girardin, Cécile A J
Both, Sabine
Riutta, Terhi
Berenguer, Erika
Kissling, W Daniel
Bauman, David
Abernethy, Katharine
Jeffery, Kathryn J
White, Lee J T
Contact Email: kathryn.jeffery1@stir.ac.uk
Keywords: Plant traits
Sentinel-2
Tropical forests
Random Forest
Pixel-level predictions
Image texture
Issue Date: Jan-2021
Date Deposited: 17-Nov-2020
Citation: Aguirre-Gutiérrez J, Rifai S, Shenkin A, Oliveras I, Bentley LP, Svátek M, Girardin CAJ, Both S, Riutta T, Berenguer E, Kissling WD, Bauman D, Abernethy K, Jeffery KJ & White LJT (2021) Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sensing of Environment, 252, Art. No.: 112122. https://doi.org/10.1016/j.rse.2020.112122
Abstract: Tropical forest ecosystems are undergoing rapid transformation as a result of changing environmental conditions and direct human impacts. However, we cannot adequately understand, monitor or simulate tropical ecosystem responses to environmental changes without capturing the high diversity of plant functional characteristics in the species-rich tropics. Failure to do so can oversimplify our understanding of ecosystems responses to environmental disturbances. Innovative methods and data products are needed to track changes in functional trait composition in tropical forest ecosystems through time and space. This study aimed to track key functional traits by coupling Sentinel-2 derived variables with a unique data set of precisely located in-situ measurements of canopy functional traits collected from 2434 individual trees across the tropics using a standardised methodology. The functional traits and vegetation censuses were collected from 47 field plots in the countries of Australia, Brazil, Peru, Gabon, Ghana, and Malaysia, which span the four tropical continents. The spatial positions of individual trees above 10 cm diameter at breast height (DBH) were mapped and their canopy size and shape recorded. Using geo-located tree canopy size and shape data, community-level trait values were estimated at the same spatial resolution as Sentinel-2 imagery (i.e. 10 m pixels). We then used the Geographic Random Forest (GRF) to model and predict functional traits across our plots. We demonstrate that key plant functional traits can be accurately predicted across the tropicsusing the high spatial and spectral resolution of Sentinel-2 imagery in conjunction with climatic and soil information. Image textural parameters were found to be key components of remote sensing information for predicting functional traits across tropical forests and woody savannas. Leaf thickness (R2 = 0.52) obtained the highest prediction accuracy among the morphological and structural traits and leaf carbon content (R2 = 0.70) and maximum rates of photosynthesis (R2 = 0.67) obtained the highest prediction accuracy for leaf chemistry and photosynthesis related traits, respectively. Overall, the highest prediction accuracy was obtained for leaf chemistry and photosynthetic traits in comparison to morphological and structural traits. Our approach offers new opportunities for mapping, monitoring and understanding biodiversity and ecosystem change in the most species-rich ecosystems on Earth.
DOI Link: 10.1016/j.rse.2020.112122
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Aguirre-Gutiérrez J, Rifai S, Shenkin A, Oliveras I, Bentley LP, Svátek M, Girardin CAJ, Both S, Riutta T, Berenguer E, Kissling WD, Bauman D, Abernethy K, Jeffery KJ & White LJT (2021) Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sensing of Environment, 252, Art. No.: 112122. https://doi.org/10.1016/j.rse.2020.112122 © 2020, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Notes: Additional co-authors: Nicolas Raab, Sam Moore, William Farfan-Rioshi, Axa Emanuelle Simões Figueiredo, Simone Matias Reisa, Josué Edzang Ndong, Fidèle Evouna Ondo, Natacha N'ssi Bengone, Vianet Mihindou, Marina Maria Moraes de Seixas, Stephen Adu-Bredu, Gregory P Asner, Jos Barlow, David F R P Burslem, David A Coomes, Lucas A Cernusak, Greta C Dargie, Brian J Enquist, Robert M Ewers, Joice Ferreira, Carlos A Joly, Simon L Lewis, Ben Hur Marimon-Junior, Roberta E Martin, Paulo S Morandi, Oliver L Phillips, Carlos A Quesada, Norma Salinas, Beatriz Schwantes Marimon, Miles Silman, Yit Arn Teh, Yadvinder Malhi
Licence URL(s): http://creativecommons.org/licenses/by-nc-nd/4.0/

Files in This Item:
File Description SizeFormat 
Sentinel_Aguirre_etal_v030920_SI_REVIEWED.pdfSupporting Information2.7 MBAdobe PDFView/Open
Sentinel_Aguirre_etal_v240920_main_wFigsTables.pdfFulltext - Accepted Version1.58 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.