Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/31919
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Peer Review Status: | Refereed |
Title: | Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes |
Author(s): | Pilla, Rachel Williamson, Craig E Adamovich, Boris V Adrian, Rita Anneville, Orlane Chandra, Sudeep Colom-Montero, William Devlin, Shawn P Dix, Margaret A Dokulil, Martin T Gaiser, Evelyn E Girdner, Scott F Hambright, K David Hamilton, David P Jones, Ian D |
Contact Email: | ian.jones@stir.ac.uk |
Keywords: | Freshwater ecology Limnology |
Issue Date: | 2020 |
Date Deposited: | 9-Nov-2020 |
Citation: | Pilla R, Williamson CE, Adamovich BV, Adrian R, Anneville O, Chandra S, Colom-Montero W, Devlin SP, Dix MA, Dokulil MT, Gaiser EE, Girdner SF, Hambright KD, Hamilton DP & Jones ID (2020) Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Scientific Reports, 10 (1), Art. No.: 20514. https://doi.org/10.1038/s41598-020-76873-x |
Abstract: | Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of +0.37°C decade-1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+0.08 kg m-3 decade-1). In contrast, however, deepwater temperature trends showed little change on average (+0.06°C decade-1 ), but had high variability across lakes, with trends in individual lakes ranging from -0.68°C decade-1 to +0.65°C decade-1 . The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences. |
DOI Link: | 10.1038/s41598-020-76873-x |
Rights: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Notes: | Additional co-authors: Karl Havens, Dag O Hessen, Scott N Higgins, Timo H Huttula, Hannu Huuskonen, Peter D F Isles, Klaus D Joehnk, Wendel Bill Keller, Lesley B Knoll, Johanna Korhonen, Benjamin M Kraemer, Peter R Leavitt, Fabio Lepori, Martin S Luger, Stephen C Maberly, John M Melack, Stephanie J Melles, Döerthe C Müller-Navarra, Don C Pierson, Helen V Pislegina, Pierre-Denis Plisnier, David C Richardson, Alon Rimmer, Michela Rogora, James A Rusak, Steven Sadro, Nico Salmaso, Jasmine E Saros, Émilie Saulnier-Talbot, Daniel E Schindler, Martin Schmid, Svetlana V Shimaraeva, Eugene A Silow, Lewis M Sitoki, Ruben Sommaruga, Dietmar Straile, Kristin E Strock, Wim Thiery, Maxim A Timofeyev, Piet Verburg, Rolf D Vinebrooke, Gesa A Weyhenmeyer, Egor Zadereev |
Licence URL(s): | http://creativecommons.org/licenses/by/4.0/ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
s41598-020-76873-x.pdf | Fulltext - Published Version | 4.88 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.