Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31891
Full metadata record
DC FieldValueLanguage
dc.contributor.authorda Silva, Caio C Ven_UK
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorOliveira, Hugo Nen_UK
dc.contributor.authordos Santos, Jefersson Aen_UK
dc.date.accessioned2020-11-03T01:04:30Z-
dc.date.available2020-11-03T01:04:30Z-
dc.date.issued2020en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31891-
dc.description.abstractClassical and more recently deep computer vision methods are optimized for visible spectrum images, commonly encoded in grayscale or RGB colorspaces acquired from smartphones or cameras. A more uncommon source of images exploited in the remote sensing field are satellite and aerial images. However the development of pattern recognition approaches for these data is relatively recent, mainly due to the limited availability of this type of images, as until recently they were used exclusively for military purposes. Access to aerial imagery, including spectral information, has been increasing mainly due to the low cost of drones, cheapening of imaging satellite launch costs, and novel public datasets. Usually remote sensing applications employ computer vision techniques strictly modeled for classification tasks in closed set scenarios. However, real-world tasks rarely fit into closed set contexts, frequently presenting previously unknown classes, characterizing them as open set scenarios. Focusing on this problem, this is the first paper to study and develop semantic segmentation techniques for open set scenarios applied to remote sensing images. The main contributions of this paper are: 1) a discussion of related works in open set semantic segmentation, showing evidence that these techniques can be adapted for open set remote sensing tasks; 2) the development and evaluation of a novel approach for open set semantic segmentation. Our method yielded competitive results when compared to closed set methods for the same dataset.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_UK
dc.relationda Silva CCV, Nogueira K, Oliveira HN & dos Santos JA (2020) Towards Open-Set Semantic Segmentation of Aerial Images. In: <i>2020 IEEE Latin American GRSS and ISPRS Remote Sensing Conference, LAGIRS 2020</i>. IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020), Santiago, Chile, 21.03.2020-26.03.2020. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers Inc. pp. 16-21. https://doi.org/10.1109/LAGIRS48042.2020.9165597en_UK
dc.rights© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectOpen Seten_UK
dc.subjectDeep Learningen_UK
dc.subjectSemantic Segmentationen_UK
dc.subjectRemote Sensingen_UK
dc.titleTowards Open-Set Semantic Segmentation of Aerial Imagesen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1109/LAGIRS48042.2020.9165597en_UK
dc.citation.spage16en_UK
dc.citation.epage21en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.citation.btitle2020 IEEE Latin American GRSS and ISPRS Remote Sensing Conference, LAGIRS 2020en_UK
dc.citation.conferencedates2020-03-21 - 2020-03-26en_UK
dc.citation.conferencelocationSantiago, Chileen_UK
dc.citation.conferencenameIEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS 2020)en_UK
dc.citation.date12/08/2020en_UK
dc.citation.isbn978-1-7281-4350-7en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-85091623257en_UK
dc.identifier.wtid1669741en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.contributor.orcid0000-0002-8889-1586en_UK
dc.date.accepted2020-02-07en_UK
dcterms.dateAccepted2020-02-07en_UK
dc.date.filedepositdate2020-11-02en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorda Silva, Caio C V|en_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authorOliveira, Hugo N|en_UK
local.rioxx.authordos Santos, Jefersson A|0000-0002-8889-1586en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.freetoreaddate2020-11-02en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2020-11-02|en_UK
local.rioxx.filenameTowards_Open-Set_Semantic_Segmentation_of_Aerial_I.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-7281-4350-7en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Towards_Open-Set_Semantic_Segmentation_of_Aerial_I.pdfFulltext - Accepted Version1.81 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.