Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/31799
Appears in Collections: | Psychology Journal Articles |
Peer Review Status: | Refereed |
Title: | A marker of biological age explains individual variation in the strength of the adult stress response |
Author(s): | Andrews, Clare Nettle, Daniel Larriva, Maria Gillespie, Robert Reichert, Sophie Brilot, Ben O. Bedford, Thomas Monaghan, Pat Bateson, Melissa Spencer, Karen A. |
Keywords: | telomere corticosterone early-life adversity Sturnus vulgaris biological age stress response |
Issue Date: | Sep-2017 |
Date Deposited: | 9-Oct-2020 |
Citation: | Andrews C, Nettle D, Larriva M, Gillespie R, Reichert S, Brilot BO, Bedford T, Monaghan P, Bateson M & Spencer KA (2017) A marker of biological age explains individual variation in the strength of the adult stress response. Royal Society Open Science, 4 (9), Art. No.: 171208. https://doi.org/10.1098/rsos.171208 |
Abstract: | The acute stress response functions to prioritize behavioural and physiological processes that maximize survival in the face of immediate threat. There is variation between individuals in the strength of the adult stress response that is of interest in both evolutionary biology and medicine. Age is an established source of this variation—stress responsiveness diminishes with increasing age in a range of species—but unexplained variation remains. Since individuals of the same chronological age may differ markedly in their pace of biological ageing, we asked whether biological age—measured here via erythrocyte telomere length—predicts variation in stress responsiveness in adult animals of the same chronological age. We studied two cohorts of European starlings in which we had previously manipulated the rate of biological ageing by experimentally altering the competition experienced by chicks in the fortnight following hatching. We predicted that individuals with greater developmental telomere attrition, and hence greater biological age, would show an attenuated corticosterone (CORT) response to an acute stressor when tested as adults. In both cohorts, we found that birds with greater developmental telomere attrition had lower peak CORT levels and a more negative change in CORT levels between 15 and 30 min following stress exposure. Our results, therefore, provide strong evidence that a measure of biological age explains individual variation in stress responsiveness: birds that were biologically older were less stress responsive. Our results provide a novel explanation for the phenomenon of developmental programming of the stress response: observed changes in stress physiology as a result of exposure to early-life adversity may reflect changes in ageing. |
DOI Link: | 10.1098/rsos.171208 |
Rights: | © 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
Licence URL(s): | http://creativecommons.org/licenses/by/4.0/ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Andrews-etal-RSOS-2017.pdf | Fulltext - Published Version | 603.99 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.