Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31792
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHancock, Peter J Ben_UK
dc.contributor.authorSomai, Rosyl Sen_UK
dc.contributor.authorMileva, Viktoria Ren_UK
dc.date.accessioned2020-10-09T00:04:44Z-
dc.date.available2020-10-09T00:04:44Z-
dc.date.issued2020-10en_UK
dc.identifier.other200595en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31792-
dc.description.abstractConvolutional neural networks (CNNs) give the state-of-the-art performance in many pattern recognition problems but can be fooled by carefully crafted patterns of noise. We report that CNN face recognition systems also make surprising ‘errors'. We tested six commercial face recognition CNNs and found that they outperform typical human participants on standard face-matching tasks. However, they also declare matches that humans would not, where one image from the pair has been transformed to appear a different sex or race. This is not due to poor performance; the best CNNs perform almost perfectly on the human face-matching tasks, but also declare the most matches for faces of a different apparent race or sex. Although differing on the salience of sex and race, humans and computer systems are not working in completely different ways. They tend to find the same pairs of images difficult, suggesting some agreement about the underlying similarity space.en_UK
dc.language.isoenen_UK
dc.publisherThe Royal Societyen_UK
dc.relationHancock PJB, Somai RS & Mileva VR (2020) Convolutional neural net face recognition works in non-human-like ways. Royal Society Open Science, 7 (10), Art. No.: 200595. https://doi.org/10.1098/rsos.200595en_UK
dc.rights© 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectConvolutional Neural Netsen_UK
dc.subjectAutomatic Face Recognitionen_UK
dc.subjectHuman Face Matchingen_UK
dc.titleConvolutional neural net face recognition works in non-human-like waysen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1098/rsos.200595en_UK
dc.identifier.pmid33204449en_UK
dc.citation.jtitleRoyal Society Open Scienceen_UK
dc.citation.issn2054-5703en_UK
dc.citation.volume7en_UK
dc.citation.issue10en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEPSRC Engineering and Physical Sciences Research Councilen_UK
dc.author.emailp.j.b.hancock@stir.ac.uken_UK
dc.citation.date07/10/2020en_UK
dc.contributor.affiliationPsychologyen_UK
dc.contributor.affiliationPsychologyen_UK
dc.contributor.affiliationPsychologyen_UK
dc.identifier.isiWOS:000582234600001en_UK
dc.identifier.scopusid2-s2.0-85096212543en_UK
dc.identifier.wtid1669551en_UK
dc.contributor.orcid0000-0001-6025-7068en_UK
dc.contributor.orcid0000-0002-8644-1282en_UK
dc.contributor.orcid0000-0002-7983-3069en_UK
dc.date.accepted2020-09-15en_UK
dcterms.dateAccepted2020-09-15en_UK
dc.date.filedepositdate2020-10-08en_UK
dc.relation.funderprojectFACERVM - Face Matchingen_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorHancock, Peter J B|0000-0001-6025-7068en_UK
local.rioxx.authorSomai, Rosyl S|0000-0002-8644-1282en_UK
local.rioxx.authorMileva, Viktoria R|0000-0002-7983-3069en_UK
local.rioxx.projectNot Applicable|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2020-10-08en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2020-10-08|en_UK
local.rioxx.filenamersos.200595.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2054-5703en_UK
Appears in Collections:Psychology Journal Articles

Files in This Item:
File Description SizeFormat 
rsos.200595.pdfFulltext - Published Version544.01 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.