Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31760
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRuiz-Ramos, Javieren_UK
dc.contributor.authorMarino, Armandoen_UK
dc.contributor.authorBoardman, Carlen_UK
dc.contributor.authorSuarez, Juanen_UK
dc.date.accessioned2020-09-30T00:01:58Z-
dc.date.available2020-09-30T00:01:58Z-
dc.date.issued2020-09en_UK
dc.identifier.other3061en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31760-
dc.description.abstractForest degradation is recognized as a major environmental threat on a global scale. The recent rise in natural and anthropogenic destruction of forested ecosystems highlights the need for developing new, rapid, and accurate remote sensing monitoring systems, which capture forested land transformations. In spite of the great technological advances made in airborne and spaceborne sensors over the past decades, current Earth observation (EO) change detection methods still need to overcome numerous limitations. Optical sensors have been commonly used for detecting land use and land cover changes (LULCC), however, the requirement of certain technical and environmental conditions (e.g., sunlight, not cloud-coverage) restrict their use. More recently, synthetic aperture radar (SAR)-based change detection approaches have been used to overcome these technical limitations, but they commonly rely on static detection approaches (e.g., pre and post disturbance scenario comparison) that are slow to monitor change. In this context, this paper presents a novel approach for mapping forest structural changes in a continuous and near-real-time manner using dense Sentinel-1 image time-series. Our cumulative sum–spatial mean corrected (CUSU-SMC) algorithm approach is based on cumulative sum statistical analysis, which allows the continuous monitoring of radar signal variations, derived from forest structural change. Taking advantage of the high data availability offered by the Sentinel-1 (S-1) C-band constellation, we used an S-1 ground range detected (GRD) dual (VV, VH) polarization timeseries, formed by a total of 84 images, to monitor clear-cutting operations carried out in a Scottish forest during 2019. The analysis showed a user’s accuracy of 82% for the (conservative) detection approach. The use of a post-processing neighbor filter increased the detection performance to a user’s accuracy of 86% with an overall accuracy of 77% for areas of a minimum extent of 0.4 ha. To further validate the detection performance of the method, the CUSU-SMC change detector was tested against commonly-used pairwise change detection approaches for the same period. These results emphasize the capabilities of dense SAR time-series for environmental monitoring and provide a useful tool for optimizing national forest inventories.en_UK
dc.language.isoenen_UK
dc.publisherMDPI AGen_UK
dc.relationRuiz-Ramos J, Marino A, Boardman C & Suarez J (2020) Continuous Forest Monitoring Using Cumulative Sums of Sentinel-1 Timeseries. Remote Sensing, 12 (18), Art. No.: 3061. https://doi.org/10.3390/rs12183061en_UK
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectSentinel-1en_UK
dc.subjectSARen_UK
dc.subjectchange detectionen_UK
dc.subjectdeforestationen_UK
dc.subjectforest degradationen_UK
dc.subjectforest mappingen_UK
dc.titleContinuous Forest Monitoring Using Cumulative Sums of Sentinel-1 Timeseriesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/rs12183061en_UK
dc.citation.jtitleRemote Sensingen_UK
dc.citation.issn2072-4292en_UK
dc.citation.volume12en_UK
dc.citation.issue18en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderUK Space Agencyen_UK
dc.citation.date18/09/2020en_UK
dc.contributor.affiliationThe Open Universityen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationThe Open Universityen_UK
dc.contributor.affiliationForest Researchen_UK
dc.identifier.isiWOS:000580812800001en_UK
dc.identifier.scopusid2-s2.0-85092271197en_UK
dc.identifier.wtid1666166en_UK
dc.contributor.orcid0000-0003-4210-3887en_UK
dc.contributor.orcid0000-0002-4531-3102en_UK
dc.contributor.orcid0000-0002-0233-6347en_UK
dc.contributor.orcid0000-0001-5146-4065en_UK
dc.date.accepted2020-09-15en_UK
dcterms.dateAccepted2020-09-15en_UK
dc.date.filedepositdate2020-09-29en_UK
dc.relation.funderprojectIntegrated Space Technology Vector Control for Enhancing community health and resilience against escalating climatic disruptions (DETECT)2en_UK
dc.relation.funderrefAMS1474448en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorRuiz-Ramos, Javier|0000-0003-4210-3887en_UK
local.rioxx.authorMarino, Armando|0000-0002-4531-3102en_UK
local.rioxx.authorBoardman, Carl|0000-0002-0233-6347en_UK
local.rioxx.authorSuarez, Juan|0000-0001-5146-4065en_UK
local.rioxx.projectAMS1474448|UK Space Agency|http://dx.doi.org/10.13039/100011690en_UK
local.rioxx.freetoreaddate2020-09-29en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2020-09-29|en_UK
local.rioxx.filenameremotesensing-12-03061-v2.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2072-4292en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
remotesensing-12-03061-v2.pdfFulltext - Published Version6.87 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.