Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/31760
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ruiz-Ramos, Javier | en_UK |
dc.contributor.author | Marino, Armando | en_UK |
dc.contributor.author | Boardman, Carl | en_UK |
dc.contributor.author | Suarez, Juan | en_UK |
dc.date.accessioned | 2020-09-30T00:01:58Z | - |
dc.date.available | 2020-09-30T00:01:58Z | - |
dc.date.issued | 2020-09 | en_UK |
dc.identifier.other | 3061 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/31760 | - |
dc.description.abstract | Forest degradation is recognized as a major environmental threat on a global scale. The recent rise in natural and anthropogenic destruction of forested ecosystems highlights the need for developing new, rapid, and accurate remote sensing monitoring systems, which capture forested land transformations. In spite of the great technological advances made in airborne and spaceborne sensors over the past decades, current Earth observation (EO) change detection methods still need to overcome numerous limitations. Optical sensors have been commonly used for detecting land use and land cover changes (LULCC), however, the requirement of certain technical and environmental conditions (e.g., sunlight, not cloud-coverage) restrict their use. More recently, synthetic aperture radar (SAR)-based change detection approaches have been used to overcome these technical limitations, but they commonly rely on static detection approaches (e.g., pre and post disturbance scenario comparison) that are slow to monitor change. In this context, this paper presents a novel approach for mapping forest structural changes in a continuous and near-real-time manner using dense Sentinel-1 image time-series. Our cumulative sum–spatial mean corrected (CUSU-SMC) algorithm approach is based on cumulative sum statistical analysis, which allows the continuous monitoring of radar signal variations, derived from forest structural change. Taking advantage of the high data availability offered by the Sentinel-1 (S-1) C-band constellation, we used an S-1 ground range detected (GRD) dual (VV, VH) polarization timeseries, formed by a total of 84 images, to monitor clear-cutting operations carried out in a Scottish forest during 2019. The analysis showed a user’s accuracy of 82% for the (conservative) detection approach. The use of a post-processing neighbor filter increased the detection performance to a user’s accuracy of 86% with an overall accuracy of 77% for areas of a minimum extent of 0.4 ha. To further validate the detection performance of the method, the CUSU-SMC change detector was tested against commonly-used pairwise change detection approaches for the same period. These results emphasize the capabilities of dense SAR time-series for environmental monitoring and provide a useful tool for optimizing national forest inventories. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | MDPI AG | en_UK |
dc.relation | Ruiz-Ramos J, Marino A, Boardman C & Suarez J (2020) Continuous Forest Monitoring Using Cumulative Sums of Sentinel-1 Timeseries. Remote Sensing, 12 (18), Art. No.: 3061. https://doi.org/10.3390/rs12183061 | en_UK |
dc.rights | © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | Sentinel-1 | en_UK |
dc.subject | SAR | en_UK |
dc.subject | change detection | en_UK |
dc.subject | deforestation | en_UK |
dc.subject | forest degradation | en_UK |
dc.subject | forest mapping | en_UK |
dc.title | Continuous Forest Monitoring Using Cumulative Sums of Sentinel-1 Timeseries | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.3390/rs12183061 | en_UK |
dc.citation.jtitle | Remote Sensing | en_UK |
dc.citation.issn | 2072-4292 | en_UK |
dc.citation.volume | 12 | en_UK |
dc.citation.issue | 18 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.contributor.funder | UK Space Agency | en_UK |
dc.citation.date | 18/09/2020 | en_UK |
dc.contributor.affiliation | The Open University | en_UK |
dc.contributor.affiliation | Biological and Environmental Sciences | en_UK |
dc.contributor.affiliation | The Open University | en_UK |
dc.contributor.affiliation | Forest Research | en_UK |
dc.identifier.isi | WOS:000580812800001 | en_UK |
dc.identifier.scopusid | 2-s2.0-85092271197 | en_UK |
dc.identifier.wtid | 1666166 | en_UK |
dc.contributor.orcid | 0000-0003-4210-3887 | en_UK |
dc.contributor.orcid | 0000-0002-4531-3102 | en_UK |
dc.contributor.orcid | 0000-0002-0233-6347 | en_UK |
dc.contributor.orcid | 0000-0001-5146-4065 | en_UK |
dc.date.accepted | 2020-09-15 | en_UK |
dcterms.dateAccepted | 2020-09-15 | en_UK |
dc.date.filedepositdate | 2020-09-29 | en_UK |
dc.relation.funderproject | Integrated Space Technology Vector Control for Enhancing community health and resilience against escalating climatic disruptions (DETECT)2 | en_UK |
dc.relation.funderref | AMS1474448 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Ruiz-Ramos, Javier|0000-0003-4210-3887 | en_UK |
local.rioxx.author | Marino, Armando|0000-0002-4531-3102 | en_UK |
local.rioxx.author | Boardman, Carl|0000-0002-0233-6347 | en_UK |
local.rioxx.author | Suarez, Juan|0000-0001-5146-4065 | en_UK |
local.rioxx.project | AMS1474448|UK Space Agency|http://dx.doi.org/10.13039/100011690 | en_UK |
local.rioxx.freetoreaddate | 2020-09-29 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2020-09-29| | en_UK |
local.rioxx.filename | remotesensing-12-03061-v2.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 2072-4292 | en_UK |
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
remotesensing-12-03061-v2.pdf | Fulltext - Published Version | 6.87 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.