Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31755
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Taoen_UK
dc.contributor.authorYang, Ziyuanen_UK
dc.contributor.authorMarino, Armandoen_UK
dc.contributor.authorGao, Guien_UK
dc.contributor.authorYang, Jianen_UK
dc.date.accessioned2020-09-30T00:00:18Z-
dc.date.available2020-09-30T00:00:18Z-
dc.date.issued2021-06en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31755-
dc.description.abstractThe detection of small ships in polarimetric synthetic aperture radar (PolSAR) images is still a topic for further investigation. Recently, patch detection techniques, such as superpixel-level detection, have stimulated wide interest because they can use the information contained in similarities among neighboring pixels. In this article, we propose a novel neighborhood polarimetric covariance matrix (NPCM) to detect the small ships in PolSAR images, leading to a significant improvement in the separability between ship targets and sea clutter. The NPCM utilizes the spatial correlation between neighborhood pixels and maps the representation for a given pixel into a high-dimensional covariance matrix by embedding spatial and polarization information. Using the NPCM formalism, we apply a standard whitening filter, similar to the polarimetric whitening filter (PWF). We show how the inclusion of neighborhood information improves the performance compared with the traditional polarimetric covariance matrix. However, this is at the expense of a higher computation cost. The theory is validated via the simulated and measured data under different sea states and using different radar platforms.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationLiu T, Yang Z, Marino A, Gao G & Yang J (2021) PolSAR Ship Detection Based on Neighborhood Polarimetric Covariance Matrix. IEEE Transactions on Geoscience and Remote Sensing, 59 (6), pp. 4874-4887. https://doi.org/10.1109/tgrs.2020.3022181en_UK
dc.rights© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectMarine vehiclesen_UK
dc.subjectCovariance matricesen_UK
dc.subjectDetectorsen_UK
dc.subjectCorrelationen_UK
dc.subjectSynthetic aperture radaren_UK
dc.subjectClutteren_UK
dc.subjectScatteringen_UK
dc.titlePolSAR Ship Detection Based on Neighborhood Polarimetric Covariance Matrixen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/tgrs.2020.3022181en_UK
dc.citation.jtitleIEEE Transactions on Geoscience and Remote Sensingen_UK
dc.citation.issn1558-0644en_UK
dc.citation.issn0196-2892en_UK
dc.citation.volume59en_UK
dc.citation.issue6en_UK
dc.citation.spage4874en_UK
dc.citation.epage4887en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderKey Research Plan of Hunan Provinceen_UK
dc.contributor.funderFundamental Research Funds for the Central Universitiesen_UK
dc.contributor.funderNational Natural Science Foundation of Chinaen_UK
dc.contributor.funderField Foundation of Illinoisen_UK
dc.contributor.funderNational Natural Science Foundation of Chinaen_UK
dc.contributor.funderNational Natural Science Foundation of Chinaen_UK
dc.author.emailarmando.marino@stir.ac.uken_UK
dc.citation.date24/09/2020en_UK
dc.contributor.affiliationPLA Naval University of Engineeringen_UK
dc.contributor.affiliationPLA Naval University of Engineeringen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationSouthwest Jiaotong Universityen_UK
dc.contributor.affiliationTsinghua Universityen_UK
dc.identifier.isiWOS:000652834200029en_UK
dc.identifier.scopusid2-s2.0-85106715524en_UK
dc.identifier.wtid1666184en_UK
dc.contributor.orcid0000-0002-9596-4536en_UK
dc.contributor.orcid0000-0002-4531-3102en_UK
dc.contributor.orcid0000-0003-4596-5829en_UK
dc.date.accepted2020-09-04en_UK
dcterms.dateAccepted2020-09-04en_UK
dc.date.filedepositdate2020-09-29en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorLiu, Tao|0000-0002-9596-4536en_UK
local.rioxx.authorYang, Ziyuan|en_UK
local.rioxx.authorMarino, Armando|0000-0002-4531-3102en_UK
local.rioxx.authorGao, Gui|0000-0003-4596-5829en_UK
local.rioxx.authorYang, Jian|en_UK
local.rioxx.project2019SK2173|Key Research Plan of Hunan Province|en_UK
local.rioxx.project2682020ZT34|Fundamental Research Funds for the Central Universities|en_UK
local.rioxx.project61771483|National Natural Science Foundation of China|en_UK
local.rioxx.project61404160109|Field Foundation of Illinois|en_UK
local.rioxx.project61490693|National Natural Science Foundation of China|en_UK
local.rioxx.project41822105|National Natural Science Foundation of China|en_UK
local.rioxx.freetoreaddate2020-09-29en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2020-09-29|en_UK
local.rioxx.filename3FINAL VERSION.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1558-0644en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
3FINAL VERSION.pdfFulltext - Accepted Version2.52 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.