Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/31755
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liu, Tao | en_UK |
dc.contributor.author | Yang, Ziyuan | en_UK |
dc.contributor.author | Marino, Armando | en_UK |
dc.contributor.author | Gao, Gui | en_UK |
dc.contributor.author | Yang, Jian | en_UK |
dc.date.accessioned | 2020-09-30T00:00:18Z | - |
dc.date.available | 2020-09-30T00:00:18Z | - |
dc.date.issued | 2021-06 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/31755 | - |
dc.description.abstract | The detection of small ships in polarimetric synthetic aperture radar (PolSAR) images is still a topic for further investigation. Recently, patch detection techniques, such as superpixel-level detection, have stimulated wide interest because they can use the information contained in similarities among neighboring pixels. In this article, we propose a novel neighborhood polarimetric covariance matrix (NPCM) to detect the small ships in PolSAR images, leading to a significant improvement in the separability between ship targets and sea clutter. The NPCM utilizes the spatial correlation between neighborhood pixels and maps the representation for a given pixel into a high-dimensional covariance matrix by embedding spatial and polarization information. Using the NPCM formalism, we apply a standard whitening filter, similar to the polarimetric whitening filter (PWF). We show how the inclusion of neighborhood information improves the performance compared with the traditional polarimetric covariance matrix. However, this is at the expense of a higher computation cost. The theory is validated via the simulated and measured data under different sea states and using different radar platforms. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_UK |
dc.relation | Liu T, Yang Z, Marino A, Gao G & Yang J (2021) PolSAR Ship Detection Based on Neighborhood Polarimetric Covariance Matrix. IEEE Transactions on Geoscience and Remote Sensing, 59 (6), pp. 4874-4887. https://doi.org/10.1109/tgrs.2020.3022181 | en_UK |
dc.rights | © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en_UK |
dc.subject | Marine vehicles | en_UK |
dc.subject | Covariance matrices | en_UK |
dc.subject | Detectors | en_UK |
dc.subject | Correlation | en_UK |
dc.subject | Synthetic aperture radar | en_UK |
dc.subject | Clutter | en_UK |
dc.subject | Scattering | en_UK |
dc.title | PolSAR Ship Detection Based on Neighborhood Polarimetric Covariance Matrix | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1109/tgrs.2020.3022181 | en_UK |
dc.citation.jtitle | IEEE Transactions on Geoscience and Remote Sensing | en_UK |
dc.citation.issn | 1558-0644 | en_UK |
dc.citation.issn | 0196-2892 | en_UK |
dc.citation.volume | 59 | en_UK |
dc.citation.issue | 6 | en_UK |
dc.citation.spage | 4874 | en_UK |
dc.citation.epage | 4887 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.contributor.funder | Key Research Plan of Hunan Province | en_UK |
dc.contributor.funder | Fundamental Research Funds for the Central Universities | en_UK |
dc.contributor.funder | National Natural Science Foundation of China | en_UK |
dc.contributor.funder | Field Foundation of Illinois | en_UK |
dc.contributor.funder | National Natural Science Foundation of China | en_UK |
dc.contributor.funder | National Natural Science Foundation of China | en_UK |
dc.author.email | armando.marino@stir.ac.uk | en_UK |
dc.citation.date | 24/09/2020 | en_UK |
dc.contributor.affiliation | PLA Naval University of Engineering | en_UK |
dc.contributor.affiliation | PLA Naval University of Engineering | en_UK |
dc.contributor.affiliation | Biological and Environmental Sciences | en_UK |
dc.contributor.affiliation | Southwest Jiaotong University | en_UK |
dc.contributor.affiliation | Tsinghua University | en_UK |
dc.identifier.isi | WOS:000652834200029 | en_UK |
dc.identifier.scopusid | 2-s2.0-85106715524 | en_UK |
dc.identifier.wtid | 1666184 | en_UK |
dc.contributor.orcid | 0000-0002-9596-4536 | en_UK |
dc.contributor.orcid | 0000-0002-4531-3102 | en_UK |
dc.contributor.orcid | 0000-0003-4596-5829 | en_UK |
dc.date.accepted | 2020-09-04 | en_UK |
dcterms.dateAccepted | 2020-09-04 | en_UK |
dc.date.filedepositdate | 2020-09-29 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Liu, Tao|0000-0002-9596-4536 | en_UK |
local.rioxx.author | Yang, Ziyuan| | en_UK |
local.rioxx.author | Marino, Armando|0000-0002-4531-3102 | en_UK |
local.rioxx.author | Gao, Gui|0000-0003-4596-5829 | en_UK |
local.rioxx.author | Yang, Jian| | en_UK |
local.rioxx.project | 2019SK2173|Key Research Plan of Hunan Province| | en_UK |
local.rioxx.project | 2682020ZT34|Fundamental Research Funds for the Central Universities| | en_UK |
local.rioxx.project | 61771483|National Natural Science Foundation of China| | en_UK |
local.rioxx.project | 61404160109|Field Foundation of Illinois| | en_UK |
local.rioxx.project | 61490693|National Natural Science Foundation of China| | en_UK |
local.rioxx.project | 41822105|National Natural Science Foundation of China| | en_UK |
local.rioxx.freetoreaddate | 2020-09-29 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2020-09-29| | en_UK |
local.rioxx.filename | 3FINAL VERSION.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1558-0644 | en_UK |
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
3FINAL VERSION.pdf | Fulltext - Accepted Version | 2.52 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.