Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31734
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWoldemariam, Nardos Tesfayeen_UK
dc.contributor.authorAgafonov, Olegen_UK
dc.contributor.authorSindre, Hildeen_UK
dc.contributor.authorHøyheim, Bjørnen_UK
dc.contributor.authorHouston, Ross Den_UK
dc.contributor.authorRobledo, Diegoen_UK
dc.contributor.authorBron, James Een_UK
dc.contributor.authorAndreassen, Runeen_UK
dc.date.accessioned2020-09-25T00:01:56Z-
dc.date.available2020-09-25T00:01:56Z-
dc.date.issued2020en_UK
dc.identifier.other2113en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31734-
dc.description.abstractInfectious pancreatic necrosis virus (IPNV) infection has been a major problem in salmonid aquaculture. Marker-assisted selection of individuals with resistant genotype at the major IPN quantitative trait locus (IPN-QTL) has significantly reduced mortality in recent years. We have identified host miRNAs that respond to IPNV challenge in salmon fry that were either homozygous resistant (RR) or homozygous susceptible (SS) for the IPN-QTL. Small RNA-sequenced control samples were compared to samples collected at 1, 7, and 20 days post challenge (dpc). This revealed 72 differentially expressed miRNAs (DE miRNAs). Viral load (VL) was lower in RR vs. SS individuals at 7 and 20 dpc. However, analysis of miRNA expression changes revealed no differences between RR vs. SS individuals in controls, at 1 or 7 dpc, while 38 “high viral load responding” miRNAs (HVL-DE miRNAs) were identified at 20 dpc. Most of the HVL-DE miRNAs showed changes that were more pronounced in the high VL SS group than in the low VL RR group when compared to the controls. The absence of differences between QTL groups in controls, 1 and 7 dpc indicates that the QTL genotype does not affect miRNA expression in healthy fish or their first response to viral infections. The miRNA differences at 20 dpc were associated with the QTL genotype and could, possibly, contribute to differences in resistance/susceptibility at the later stage of infection. In silico target gene predictions revealed that 180 immune genes were putative targets, and enrichment analysis indicated that the miRNAs may regulate several major immune system pathways. Among the targets of HVL-DE miRNAs were IRF3, STAT4, NFKB2, MYD88, and IKKA. Interestingly, TNF-alpha paralogs were targeted by different DE miRNAs. Most DE miRNAs were from conserved miRNA families that respond to viral infections in teleost (e.g., miR-21, miR-146, miR-181, miR-192, miR-221, miR-462, miR-731, and miR-8159), while eight were species specific. The miRNAs showed dynamic temporal changes implying they would affect their target genes differently throughout disease progression. This shows that miRNAs are sensitive to VL and disease progression, and may act as fine-tuners of both immediate immune response activation and the later inflammatory processes.en_UK
dc.language.isoenen_UK
dc.publisherFrontiers Media SAen_UK
dc.relationWoldemariam NT, Agafonov O, Sindre H, Høyheim B, Houston RD, Robledo D, Bron JE & Andreassen R (2020) miRNAs Predicted to Regulate Host Anti-viral Gene Pathways in IPNV-Challenged Atlantic Salmon Fry Are Affected by Viral Load, and Associated With the Major IPN Resistance QTL Genotypes in Late Infection. Frontiers in Immunology, 11, Art. No.: 2113. https://doi.org/10.3389/fimmu.2020.02113en_UK
dc.rights© 2020 Woldemariam, Agafonov, Sindre, Høyheim, Houston, Robledo, Bron and Andreassen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY - https://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectAtlantic salmonen_UK
dc.subjectmicroRNAen_UK
dc.subjectIPNVen_UK
dc.subjectimmune responseen_UK
dc.subjecthost-virus interactionsen_UK
dc.titlemiRNAs Predicted to Regulate Host Anti-viral Gene Pathways in IPNV-Challenged Atlantic Salmon Fry Are Affected by Viral Load, and Associated With the Major IPN Resistance QTL Genotypes in Late Infectionen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3389/fimmu.2020.02113en_UK
dc.identifier.pmid33013890en_UK
dc.citation.jtitleFrontiers in Immunologyen_UK
dc.citation.issn1664-3224en_UK
dc.citation.volume11en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderNorges Forskningsråden_UK
dc.author.emailj.e.bron@stir.ac.uken_UK
dc.citation.date11/09/2020en_UK
dc.contributor.affiliationOslo Metropolitan Universityen_UK
dc.contributor.affiliationUniversity of Osloen_UK
dc.contributor.affiliationNorwegian Veterinary Instituteen_UK
dc.contributor.affiliationNorwegian University of Life Sciencesen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationInstitute of Aquacultureen_UK
dc.contributor.affiliationOslo Metropolitan Universityen_UK
dc.identifier.scopusid2-s2.0-85090842399en_UK
dc.identifier.wtid1664702en_UK
dc.contributor.orcid0000-0003-3544-0519en_UK
dc.date.accepted2020-08-04en_UK
dcterms.dateAccepted2020-08-04en_UK
dc.date.filedepositdate2020-09-23en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorWoldemariam, Nardos Tesfaye|en_UK
local.rioxx.authorAgafonov, Oleg|en_UK
local.rioxx.authorSindre, Hilde|en_UK
local.rioxx.authorHøyheim, Bjørn|en_UK
local.rioxx.authorHouston, Ross D|en_UK
local.rioxx.authorRobledo, Diego|en_UK
local.rioxx.authorBron, James E|0000-0003-3544-0519en_UK
local.rioxx.authorAndreassen, Rune|en_UK
local.rioxx.projectProject ID unknown|Norges Forskningsråd|en_UK
local.rioxx.freetoreaddate2020-09-24en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2020-09-24|en_UK
local.rioxx.filenamefimmu-11-02113.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1664-3224en_UK
Appears in Collections:Aquaculture Journal Articles

Files in This Item:
File Description SizeFormat 
fimmu-11-02113.pdfFulltext - Published Version4.49 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.