Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31733
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMavragani, Amaryllisen_UK
dc.contributor.authorGkillas, Konstantinosen_UK
dc.contributor.authorTsagarakis, Konstantinos Pen_UK
dc.date.accessioned2020-09-25T00:01:23Z-
dc.date.available2020-09-25T00:01:23Z-
dc.date.issued2020-12en_UK
dc.identifier.other79en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31733-
dc.description.abstractDuring the last decade, the use of online search traffic data is becoming popular in examining, analyzing, and predicting human behavior, with Google Trends being a popular tool in monitoring and analyzing the users' online search patterns in several research areas, like health, medicine, politics, economics, and finance. Towards the direction of exploring the Sterling Pound’s predictability, we employ Google Trends data from the last 5 years (March 1st, 2015 to February 29th, 2020) and perform predictability analysis on the Pound’s exchange rates to Euro and Dollar. The period selected includes the 2016 UK referendum as well as the actual Brexit day (January 31st, 2020), with the analysis aiming at analyzing the Pound’s relationships with Google query data on Pound-related keywords and topics. A quantile dependence method is employed, i.e., cross-quantilograms, to test for directional predictability from Google Trends data to the Pound’s exchange rates for lags from zero to 30 (in weeks). The results indicate that statistically significant quantile dependencies exist between Google query data and the Pound’s exchange rates, which point to the direction of one of the main implications in this field, that is to examine whether the movements in one economic variable can cause reactions in other economic variables.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Science and Business Media LLCen_UK
dc.relationMavragani A, Gkillas K & Tsagarakis KP (2020) Predictability analysis of the Pound's Brexit exchange rates based on Google Trends data. Journal of Big Data, 7 (1), Art. No.: 79. https://doi.org/10.1186/s40537-020-00337-2en_UK
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectBig dataen_UK
dc.subjectDollaren_UK
dc.subjectEuroen_UK
dc.subjectExchange ratesen_UK
dc.subjectGoogle Trendsen_UK
dc.subjectInternet behavioren_UK
dc.subjectPound sterlingen_UK
dc.subjectPredictability analysisen_UK
dc.titlePredictability analysis of the Pound's Brexit exchange rates based on Google Trends dataen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1186/s40537-020-00337-2en_UK
dc.identifier.pmid32963933en_UK
dc.citation.jtitleJournal Of Big Dataen_UK
dc.citation.issn2196-1115en_UK
dc.citation.volume7en_UK
dc.citation.issue1en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.date18/09/2020en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Patrasen_UK
dc.contributor.affiliationDemocritus University of Thraceen_UK
dc.identifier.isiWOS:000596209000001en_UK
dc.identifier.scopusid2-s2.0-85091213584en_UK
dc.identifier.wtid1665153en_UK
dc.contributor.orcid0000-0001-6106-0873en_UK
dc.date.accepted2020-07-30en_UK
dcterms.dateAccepted2020-07-30en_UK
dc.date.filedepositdate2020-09-24en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorMavragani, Amaryllis|0000-0001-6106-0873en_UK
local.rioxx.authorGkillas, Konstantinos|en_UK
local.rioxx.authorTsagarakis, Konstantinos P|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2020-09-24en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2020-09-24|en_UK
local.rioxx.filenames40537-020-00337-2.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2196-1115en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
s40537-020-00337-2.pdfFulltext - Published Version5.3 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.