Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31688
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Yileien_UK
dc.contributor.authorBracciali, Andreaen_UK
dc.contributor.authorYang, Guoyuen_UK
dc.contributor.authorLi, Taoen_UK
dc.contributor.authorYu, Xiaomeien_UK
dc.date.accessioned2020-09-19T00:07:21Z-
dc.date.available2020-09-19T00:07:21Z-
dc.date.issued2020en_UK
dc.identifier.other106605en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31688-
dc.description.abstractCriminals can launder crypto-currencies through mixing coins, whose original purpose is preservation of privacy in the presence of traceability. Therefore, it is essential to elaborately design mixing polices to achieve both privacy and anti-money laundering. Existing work on mixing policies relies on the knowledge of a blacklist. However, these policies are paralysed under the scenario where the blacklist is unknown or evolving. In this paper, we regard the above scenario as games under incomplete information where parties put down a deposit for the quality of coins, which is suitably managed by a smart contract in case of mixing bad coins. We extend the poison and haircut policies to incomplete information games, where the blacklist is updated after mixing. We prove the existence of equilibria for the improved polices, while it is known that there is no equilibria in the original poison and haircut policies, where blacklist is public known. Furthermore, we propose a seminal suicide policy: the one who mixes more bad coins will be punished by not having the deposit refunded. Thus, parties have no incentives to launder money by leveraging mixing coins. In effect, all three policies contrast money laundering while preserving privacy under incomplete information. Finally, we simulate and verify the validity of these policies.en_UK
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.relationWang Y, Bracciali A, Yang G, Li T & Yu X (2020) Adversarial behaviours in mixing coins under incomplete information. Applied Soft Computing, 96, Art. No.: 106605. https://doi.org/10.1016/j.asoc.2020.106605en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Wang Y, Bracciali A, Yang G, Li T & Yu X (2020) Adversarial behaviours in mixing coins under incomplete information. Applied Soft Computing, 96, Art. No.: 106605. https://doi.org/10.1016/j.asoc.2020.106605 © 2020, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectMixing coinsen_UK
dc.subjectIncomplete informationen_UK
dc.subjectSmart contracten_UK
dc.subjectEquilibriumen_UK
dc.titleAdversarial behaviours in mixing coins under incomplete informationen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2021-08-05en_UK
dc.rights.embargoreason[Adversarial_Yilei-1.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1016/j.asoc.2020.106605en_UK
dc.citation.jtitleApplied Soft Computingen_UK
dc.citation.issn1568-4946en_UK
dc.citation.volume96en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailabb@cs.stir.ac.uken_UK
dc.citation.date04/08/2020en_UK
dc.contributor.affiliationQufu Normal Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationQufu Normal Universityen_UK
dc.contributor.affiliationGuizhou Universityen_UK
dc.contributor.affiliationShandong Normal Universityen_UK
dc.identifier.isiWOS:000582762000029en_UK
dc.identifier.scopusid2-s2.0-85089480676en_UK
dc.identifier.wtid1659698en_UK
dc.contributor.orcid0000-0003-1451-9260en_UK
dc.date.accepted2020-07-29en_UK
dcterms.dateAccepted2020-07-29en_UK
dc.date.filedepositdate2020-09-18en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorWang, Yilei|en_UK
local.rioxx.authorBracciali, Andrea|0000-0003-1451-9260en_UK
local.rioxx.authorYang, Guoyu|en_UK
local.rioxx.authorLi, Tao|en_UK
local.rioxx.authorYu, Xiaomei|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2021-08-05en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2021-08-04en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2021-08-05|en_UK
local.rioxx.filenameAdversarial_Yilei-1.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1568-4946en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Adversarial_Yilei-1.pdfFulltext - Accepted Version481.48 kBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.