Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31622
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHoyle, Andyen_UK
dc.contributor.authorCairns, Daviden_UK
dc.contributor.authorPaterson, Ionaen_UK
dc.contributor.authorMcMillan, Stuarten_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorDesbois, Andrew Pen_UK
dc.date.accessioned2020-09-02T00:02:52Z-
dc.date.available2020-09-02T00:02:52Z-
dc.date.issued2020en_UK
dc.identifier.othere1008037en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31622-
dc.description.abstractMass production and use of antibiotics has led to the rise of resistant bacteria, a problem possibly exacerbated by inappropriate and non-optimal application. Antibiotic treatment often follows fixed-dose regimens, with a standard dose of antibiotic administered equally spaced in time. But are such fixed-dose regimens optimal or can alternative regimens be designed to increase efficacy? Yet, few mathematical models have aimed to identify optimal treatments based on biological data of infections inside a living host. In addition, assumptions to make the mathematical models analytically tractable limit the search space of possible treatment regimens (e.g. to fixed-dose treatments). Here, we aimed to address these limitations by using experiments in a Galleria mellonella (insect) model of bacterial infection, to create a fully parametrised mathematical model of a systemic Vibrio infection. We successfully validated this model with biological experiments, including treatments unseen by the mathematical model. Then, by applying artificial intelligence, this model was used to determine optimal antibiotic dosage regimens to treat the host to maximise survival while minimising total antibiotic used. As expected, host survival increased as total quantity of antibiotic applied during the course of treatment increased. However, many of the optimal regimens tended to follow a large initial ‘loading’ dose followed by doses of incremental reductions in antibiotic quantity (dose ‘tapering’). Moreover, application of the entire antibiotic in a single dose at the start of treatment was never optimal, except when the total quantity of antibiotic was very low. Importantly, the range of optimal regimens identified was broad enough to allow the antibiotic prescriber to choose a regimen based on additional criteria or preferences. Our findings demonstrate the utility of an insect host to model antibiotic therapies in vivo and the approach lays a foundation for future regimen optimisation for patient and societal benefits.en_UK
dc.language.isoenen_UK
dc.publisherPublic Library of Scienceen_UK
dc.relationHoyle A, Cairns D, Paterson I, McMillan S, Ochoa G & Desbois AP (2020) Optimising efficacy of antibiotics against systemic infection by varying dosage quantities and times. PLoS Computational Biology, 16 (8), Art. No.: e1008037. https://doi.org/10.1371/journal.pcbi.1008037en_UK
dc.rights© 2020 Hoyle et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.titleOptimising efficacy of antibiotics against systemic infection by varying dosage quantities and timesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1371/journal.pcbi.1008037en_UK
dc.identifier.pmid32745111en_UK
dc.citation.jtitlePLoS Computational Biologyen_UK
dc.citation.issn1553-7358en_UK
dc.citation.issn1553-734Xen_UK
dc.citation.volume16en_UK
dc.citation.issue8en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEPSRC Engineering and Physical Sciences Research Councilen_UK
dc.citation.date03/08/2020en_UK
dc.contributor.affiliationMathematicsen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationInstitute of Aquacultureen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationInstitute of Aquacultureen_UK
dc.identifier.isiWOS:000561794500004en_UK
dc.identifier.scopusid2-s2.0-85090295668en_UK
dc.identifier.wtid1656201en_UK
dc.contributor.orcid0000-0002-9117-7041en_UK
dc.contributor.orcid0000-0002-0246-3821en_UK
dc.contributor.orcid0000-0003-2368-7864en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.contributor.orcid0000-0001-6052-8761en_UK
dc.date.accepted2020-06-09en_UK
dcterms.dateAccepted2020-06-09en_UK
dc.date.filedepositdate2020-09-01en_UK
dc.relation.funderprojectDAASE: Dynamic Adaptive Automated Software Engineeringen_UK
dc.relation.funderrefEP/J017515/1en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorHoyle, Andy|0000-0002-9117-7041en_UK
local.rioxx.authorCairns, David|0000-0002-0246-3821en_UK
local.rioxx.authorPaterson, Iona|en_UK
local.rioxx.authorMcMillan, Stuart|0000-0003-2368-7864en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorDesbois, Andrew P|0000-0001-6052-8761en_UK
local.rioxx.projectEP/J017515/1|Engineering and Physical Sciences Research Council|http://dx.doi.org/10.13039/501100000266en_UK
local.rioxx.freetoreaddate2020-09-01en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2020-09-01|en_UK
local.rioxx.filenamejournal.pcbi.1008037.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1553-7358en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
journal.pcbi.1008037.pdfFulltext - Published Version2.83 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.