Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31580
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBlum, Christianen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.date.accessioned2020-08-20T00:08:59Z-
dc.date.available2020-08-20T00:08:59Z-
dc.date.issued2021-04-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31580-
dc.description.abstractWe present a comparative analysis of two hybrid algorithms for solving combinatorial optimisation problems. The first one is a specific variant of an established family of techniques known as large neighbourhood search (LNS). The second one is a much more recent algorithm known as construct, merge, solve & adapt (CMSA). Both approaches generate, in different ways, reduced sub-instances of the tackled problem instance at each iteration. The experimental analysis is conducted on two NP-hard combinatorial subset selection problems: the multidimensional knapsack problem and minimum common string partition. The results support the intuition that CMSA has advantages over the LNS variant in the context of problems for which solutions contain rather few items. Moreover, they show that the opposite may be the case for problems in which solutions contain rather many items. The analysis is supported by a new way of visualising the trajectories of the compared algorithms in terms of merged monotonic local optima networks.en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationBlum C & Ochoa G (2021) A Comparative Analysis of Two Matheuristics by Means of Merged Local Optima Networks. European Journal of Operational Research, 290 (1), pp. 36-56. https://doi.org/10.1016/j.ejor.2020.08.008en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Blum C & Ochoa G (2021) A Comparative Analysis of Two Matheuristics by Means of Merged Local Optima Networks. European Journal of Operational Research, 290 (1), pp. 36-56. https://doi.org/10.1016/j.ejor.2020.08.008 © 2020, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectManagement Science and Operations Researchen_UK
dc.subjectModelling and Simulationen_UK
dc.subjectInformation Systems and Managementen_UK
dc.titleA Comparative Analysis of Two Matheuristics by Means of Merged Local Optima Networksen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2022-08-14en_UK
dc.rights.embargoreason[Matheuritics-LONs-EJOR2020.pdf] Publisher requires embargo of 24 months after formal publication.en_UK
dc.identifier.doi10.1016/j.ejor.2020.08.008en_UK
dc.citation.jtitleEuropean Journal of Operational Researchen_UK
dc.citation.issn0377-2217en_UK
dc.citation.volume290en_UK
dc.citation.issue1en_UK
dc.citation.spage36en_UK
dc.citation.epage56en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderMinistry of Economy and Competitiveness (Spain)en_UK
dc.author.emailgabriela.ochoa@stir.ac.uken_UK
dc.citation.date13/08/2020en_UK
dc.contributor.affiliationUniversitat Autonoma de Barcelonaen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000600670300003en_UK
dc.identifier.scopusid2-s2.0-85089903064en_UK
dc.identifier.wtid1653732en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2020-08-04en_UK
dcterms.dateAccepted2020-08-04en_UK
dc.date.filedepositdate2020-08-19en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorBlum, Christian|en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.projectProject ID unknown|Ministry of Economy and Competitiveness (Spain)|en_UK
local.rioxx.freetoreaddate2022-08-14en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2022-08-13en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2022-08-14|en_UK
local.rioxx.filenameMatheuritics-LONs-EJOR2020.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0377-2217en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Matheuritics-LONs-EJOR2020.pdfFulltext - Accepted Version1.25 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.