Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31526
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBriani, Matteoen_UK
dc.contributor.authorCuyt, Annieen_UK
dc.contributor.authorKnaepkens, Ferreen_UK
dc.contributor.authorLee, Wen-shinen_UK
dc.date.accessioned2020-08-06T00:03:48Z-
dc.date.available2020-08-06T00:03:48Z-
dc.date.issued2020-12en_UK
dc.identifier.other107722en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31526-
dc.description.abstractWe present a procedure that adds a number of desirable features to standard exponential analysis algorithms , among which output reliability, a divide-and-conquer approach, the automatic detection of the exponential model order, robustness against some outliers, and the possibility to parallelize the analysis. The key enabler for these features is the introduction of uniform sub-Nyquist sampling through decima-tion of the dense signal data. We actually make use of possible aliasing effects to recondition the problem statement rather than that we avoid aliasing. In Section 2 the standard exponential analysis is described, including a sensitivity analysis. In Section 3 the ingredients for the new approach are collected, of which good use is made in Section 4 where we essentially bring everything together in what we call VEXPA. Some numerical examples of the new procedure illustrate in Section 5 that the additional features are indeed realized and that VEXPA is a valuable add-on to any stand-alone exponential analysis. While returning a lot of additional output, it maintains a favourable comparison to the CRLB of the underlying method, for which we here choose a matrix pencil method. Moreover, the output reliability of VEXPA is similar to that of atomic norm minimization, whereas its computational complexity is far less.en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationBriani M, Cuyt A, Knaepkens F & Lee W (2020) VEXPA: Validated EXPonential Analysis through regular sub-sampling. Signal Processing, 177, Art. No.: 107722. https://doi.org/10.1016/j.sigpro.2020.107722en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Accepted refereed manuscript of: Briani M, Cuyt A, Knaepkens F & Lee W (2020) VEXPA: Validated EXPonential Analysis through regular sub-sampling. Signal Processing, 177, Art. No.: 107722. https://doi.org/10.1016/j.sigpro.2020.107722 © 2020, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_UK
dc.subjectExponential analysisen_UK
dc.subjectsub-Nyquist samplingen_UK
dc.subjectuniform samplingen_UK
dc.subjectnoise handlingen_UK
dc.subjectPadé-Laplaceen_UK
dc.subjectFroissart doubletsen_UK
dc.titleVEXPA: Validated EXPonential Analysis through regular sub-samplingen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2021-07-18en_UK
dc.rights.embargoreason[1709.04281.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1016/j.sigpro.2020.107722en_UK
dc.citation.jtitleSignal Processingen_UK
dc.citation.issn0165-1684en_UK
dc.citation.volume177en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderResearch Foundation - Flandersen_UK
dc.author.emailwen-shin.lee@stir.ac.uken_UK
dc.citation.date17/07/2020en_UK
dc.contributor.affiliationUniversity of Antwerpen_UK
dc.contributor.affiliationUniversity of Antwerpen_UK
dc.contributor.affiliationUniversity of Antwerpen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000568806400011en_UK
dc.identifier.scopusid2-s2.0-85088921054en_UK
dc.identifier.wtid1650288en_UK
dc.contributor.orcid0000-0002-2808-3739en_UK
dc.date.accepted2020-07-14en_UK
dcterms.dateAccepted2020-07-14en_UK
dc.date.filedepositdate2020-08-05en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorBriani, Matteo|en_UK
local.rioxx.authorCuyt, Annie|en_UK
local.rioxx.authorKnaepkens, Ferre|en_UK
local.rioxx.authorLee, Wen-shin|0000-0002-2808-3739en_UK
local.rioxx.projectProject ID unknown|Research Foundation - Flanders|en_UK
local.rioxx.freetoreaddate2021-07-18en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2021-07-17en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by-nc-nd/4.0/|2021-07-18|en_UK
local.rioxx.filename1709.04281.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0165-1684en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
1709.04281.pdfFulltext - Accepted Version2.09 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.