Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31479
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAli​, Abder-Rahmanen_UK
dc.contributor.authorLi, Jingpengen_UK
dc.contributor.authorYang, Guangen_UK
dc.contributor.authorJane O’Shea, Sallyen_UK
dc.date.accessioned2020-07-24T00:02:04Z-
dc.date.available2020-07-24T00:02:04Z-
dc.date.issued2020en_UK
dc.identifier.othere268en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31479-
dc.description.abstractSkin lesion border irregularity is considered an important clinical feature for the early diagnosis of melanoma, representing the B feature in the ABCD rule. In this article we propose an automated approach for skin lesion border irregularity detection. The approach involves extracting the skin lesion from the image, detecting the skin lesion border, measuring the border irregularity, training a Convolutional Neural Network and Gaussian naive Bayes ensemble, to the automatic detection of border irregularity, which results in an objective decision on whether the skin lesion border is considered regular or irregular. The approach achieves outstanding results, obtaining an accuracy, sensitivity, specificity, and F-score of 93.6%, 100%, 92.5% and 96.1%, respectively.en_UK
dc.language.isoenen_UK
dc.publisherPeerJen_UK
dc.relationAli​ A, Li J, Yang G & Jane O’Shea S (2020) A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images. PeerJ Computer Science, 6, Art. No.: e268. https://doi.org/10.7717/peerj-cs.268en_UK
dc.rights© 2020 Ali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectMachine learningen_UK
dc.subjectDermoscopyen_UK
dc.subjectSkin lesionen_UK
dc.subjectMelanomaen_UK
dc.subjectSegmentationen_UK
dc.titleA machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic imagesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.7717/peerj-cs.268en_UK
dc.citation.jtitlePeerJ Computer Scienceen_UK
dc.citation.issn2376-5992en_UK
dc.citation.volume6en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.citation.date29/06/2020en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationImperial College Londonen_UK
dc.contributor.affiliationMater Private Hospitalen_UK
dc.identifier.isiWOS:000547376600001en_UK
dc.identifier.wtid1647262en_UK
dc.contributor.orcid0000-0002-5450-5472en_UK
dc.contributor.orcid0000-0002-6758-0084en_UK
dc.date.accepted2020-03-05en_UK
dcterms.dateAccepted2020-03-05en_UK
dc.date.filedepositdate2020-07-23en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorAli​, Abder-Rahman|0000-0002-5450-5472en_UK
local.rioxx.authorLi, Jingpeng|0000-0002-6758-0084en_UK
local.rioxx.authorYang, Guang|en_UK
local.rioxx.authorJane O’Shea, Sally|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2020-07-23en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2020-07-23|en_UK
local.rioxx.filenamepeerj-cs-268.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2376-5992en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
peerj-cs-268.pdfFulltext - Published Version19.01 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.