Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/31479
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ali, Abder-Rahman | en_UK |
dc.contributor.author | Li, Jingpeng | en_UK |
dc.contributor.author | Yang, Guang | en_UK |
dc.contributor.author | Jane O’Shea, Sally | en_UK |
dc.date.accessioned | 2020-07-24T00:02:04Z | - |
dc.date.available | 2020-07-24T00:02:04Z | - |
dc.date.issued | 2020 | en_UK |
dc.identifier.other | e268 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/31479 | - |
dc.description.abstract | Skin lesion border irregularity is considered an important clinical feature for the early diagnosis of melanoma, representing the B feature in the ABCD rule. In this article we propose an automated approach for skin lesion border irregularity detection. The approach involves extracting the skin lesion from the image, detecting the skin lesion border, measuring the border irregularity, training a Convolutional Neural Network and Gaussian naive Bayes ensemble, to the automatic detection of border irregularity, which results in an objective decision on whether the skin lesion border is considered regular or irregular. The approach achieves outstanding results, obtaining an accuracy, sensitivity, specificity, and F-score of 93.6%, 100%, 92.5% and 96.1%, respectively. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | PeerJ | en_UK |
dc.relation | Ali A, Li J, Yang G & Jane O’Shea S (2020) A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images. PeerJ Computer Science, 6, Art. No.: e268. https://doi.org/10.7717/peerj-cs.268 | en_UK |
dc.rights | © 2020 Ali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. | en_UK |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_UK |
dc.subject | Machine learning | en_UK |
dc.subject | Dermoscopy | en_UK |
dc.subject | Skin lesion | en_UK |
dc.subject | Melanoma | en_UK |
dc.subject | Segmentation | en_UK |
dc.title | A machine learning approach to automatic detection of irregularity in skin lesion border using dermoscopic images | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.7717/peerj-cs.268 | en_UK |
dc.citation.jtitle | PeerJ Computer Science | en_UK |
dc.citation.issn | 2376-5992 | en_UK |
dc.citation.volume | 6 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.citation.date | 29/06/2020 | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Imperial College London | en_UK |
dc.contributor.affiliation | Mater Private Hospital | en_UK |
dc.identifier.isi | WOS:000547376600001 | en_UK |
dc.identifier.wtid | 1647262 | en_UK |
dc.contributor.orcid | 0000-0002-5450-5472 | en_UK |
dc.contributor.orcid | 0000-0002-6758-0084 | en_UK |
dc.date.accepted | 2020-03-05 | en_UK |
dcterms.dateAccepted | 2020-03-05 | en_UK |
dc.date.filedepositdate | 2020-07-23 | en_UK |
rioxxterms.apc | paid | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Ali, Abder-Rahman|0000-0002-5450-5472 | en_UK |
local.rioxx.author | Li, Jingpeng|0000-0002-6758-0084 | en_UK |
local.rioxx.author | Yang, Guang| | en_UK |
local.rioxx.author | Jane O’Shea, Sally| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2020-07-23 | en_UK |
local.rioxx.licence | http://creativecommons.org/licenses/by/4.0/|2020-07-23| | en_UK |
local.rioxx.filename | peerj-cs-268.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 2376-5992 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
peerj-cs-268.pdf | Fulltext - Published Version | 19.01 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.