Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31443
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMitchell, Ryanen_UK
dc.contributor.authorCairns, Daviden_UK
dc.contributor.authorHamami, Dalilaen_UK
dc.contributor.authorPollock, Kevinen_UK
dc.contributor.authorShankland, Carronen_UK
dc.contributor.editorCazzaniga, Paoloen_UK
dc.contributor.editorBesozzi, Danielaen_UK
dc.contributor.editorMerelli, Ivanen_UK
dc.contributor.editorManzoni, Lucaen_UK
dc.date.accessioned2020-07-17T00:00:16Z-
dc.date.available2020-07-17T00:00:16Z-
dc.date.issued2021en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31443-
dc.description.abstractPredictive epidemiological models are able to be used most effectively when they have first been shown to fit historical data. Finding the right parameters settings for a model is complex: the system is likely to be noisy, the data points may be sparse, and there may be many inter-related parameters. We apply computational intelligence and data mining techniques in novel ways to investigate this significant problem. We construct an original computational model of human papilloma virus and cervical intraepithelial neoplasia with the ultimate aim of predicting the outcomes of varying control techniques (e.g. vaccination, screening, treatment, quarantine). Two computational intelligence techniques (genetic algorithms and particle swarm optimisation) are used over one- stage and two-stage optimisations for eight real-valued model parameters. Rigorous comparison over a variety of quantitative measures demonstrates the explorative nature of the genetic algorithm (useful in this parameter space to support the modeller). Correlations between parameters are drawn out that might otherwise be missed. Clustering highlights the uniformity of the best genetic algorithm results. Prediction of gender-neutral vaccination with the tuned model suggests elimination of the virus across vaccinated and cross-protected strains, supporting recent Scottish government policy. This preliminary study lays the foundation for more widespread use of computational intelligence techniques in epidemiological modelling.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationMitchell R, Cairns D, Hamami D, Pollock K & Shankland C (2021) Effective use of evolutionary computation to parameterise an epidemiological model. In: Cazzaniga P, Besozzi D, Merelli I & Manzoni L (eds.) Computational Intelligence Methods for Bioinformatics and Biostatistics. Lecture Notes in Computer Science, 12313. CIBB 2019: 16th International Conference on Computational Intelligence methods for Bioinformatics and Biostatistics, Bergamo, Italy, 04.09.2019-06.09.2019. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-63061-4_3en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 12313en_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. This is a post-peer-review, pre-copyedit version of a paper published in Cazzaniga P, Besozzi D, Merelli I & Manzoni L (eds.) Computational Intelligence Methods for Bioinformatics and Biostatistics. Lecture Notes in Computer Science, 12313. CIBB 2019: 16th International Conference on Computational Intelligence methods for Bioinformatics and Biostatistics, Bergamo, Italy, 04.09.2019-06.09.2019. Cham, Switzerland: Springer. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-63061-4_3en_UK
dc.rights.urihttps://storre.stir.ac.uk/STORREEndUserLicence.pdfen_UK
dc.subjectgenetic algorithmen_UK
dc.subjectparticle swaroptimisationen_UK
dc.subjectepidemiologyen_UK
dc.subjecthuman papilloma virusen_UK
dc.subjectk-means clusteringen_UK
dc.titleEffective use of evolutionary computation to parameterise an epidemiological modelen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2020-12-10en_UK
dc.rights.embargoreason[paper78_postproceedings_revised0706.pdf] Until this work is published there will be an embargo on the full text of this work.en_UK
dc.identifier.doi10.1007/978-3-030-63061-4_3en_UK
dc.citation.issn0302-9743en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailcarron.shankland@stir.ac.uken_UK
dc.citation.btitleComputational Intelligence Methods for Bioinformatics and Biostatisticsen_UK
dc.citation.conferencedates2019-09-04 - 2019-09-06en_UK
dc.citation.conferencelocationBergamo, Italyen_UK
dc.citation.conferencenameCIBB 2019: 16th International Conference on Computational Intelligence methods for Bioinformatics and Biostatisticsen_UK
dc.citation.date10/12/2020en_UK
dc.citation.isbn978-3-030-63060-7en_UK
dc.citation.isbn978-3-030-63061-4en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversite Abdelhamid Ibn Badis Mostaganemen_UK
dc.contributor.affiliationUniversity of the Highlands and Islandsen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-85098270039en_UK
dc.identifier.wtid1639411en_UK
dc.contributor.orcid0000-0002-0246-3821en_UK
dc.contributor.orcid0000-0001-7672-2884en_UK
dc.date.accepted2020-05-06en_UK
dcterms.dateAccepted2020-05-06en_UK
dc.date.filedepositdate2020-06-25en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMitchell, Ryan|en_UK
local.rioxx.authorCairns, David|0000-0002-0246-3821en_UK
local.rioxx.authorHamami, Dalila|en_UK
local.rioxx.authorPollock, Kevin|en_UK
local.rioxx.authorShankland, Carron|0000-0001-7672-2884en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorCazzaniga, Paolo|en_UK
local.rioxx.contributorBesozzi, Daniela|en_UK
local.rioxx.contributorMerelli, Ivan|en_UK
local.rioxx.contributorManzoni, Luca|en_UK
local.rioxx.freetoreaddate2020-12-10en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2020-12-10en_UK
local.rioxx.licencehttps://storre.stir.ac.uk/STORREEndUserLicence.pdf|2020-12-10|en_UK
local.rioxx.filenamepaper78_postproceedings_revised0706.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-030-63061-4en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
paper78_postproceedings_revised0706.pdfFulltext - Accepted Version874.18 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.