Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31388
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAli, Liaqaten_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorLi, Jingpengen_UK
dc.contributor.authorShah, Amiren_UK
dc.contributor.authorSudhakr, Uen_UK
dc.contributor.authorMahmud, Muftien_UK
dc.contributor.authorZakir, Usmanen_UK
dc.contributor.authorYan, Xiuen_UK
dc.contributor.authorLuo, Binen_UK
dc.contributor.authorRajak, Men_UK
dc.date.accessioned2020-07-04T00:04:19Z-
dc.date.available2020-07-04T00:04:19Z-
dc.date.issued2014-12en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31388-
dc.description.abstractClinical Decision Support (CDS) aids in early diagnosis of liver cancer, a potentially fatal disease prevalent in both developed and developing countries. Our research aims to develop a robust and intelligent clinical decision support framework for disease management of cancer based on legacy Ultrasound (US) image data collected during various stages of liver cancer. The proposed intelligent CDS framework will automate real-time image enhancement, segmentation, disease classification and progression in order to enable efficient diagnosis of cancer patients at early stages. The CDS framework is inspired by the human interpretation of US images from the image acquisition stage to cancer progression prediction. Specifically, the proposed framework is composed of a number of stages where images are first acquired from an imaging source and pre-processed before running through an image enhancement algorithm. The detection of cancer and its segmentation is considered as the second stage in which different image segmentation techniques are utilized to partition and extract objects from the enhanced image. The third stage involves disease classification of segmented objects, in which the meanings of an investigated object are matched with the disease dictionary defined by physicians and radiologists. In the final stage; cancer progression, an array of US images is used to evaluate and predict the future stages of the disease. For experiment purposes, we applied the framework and classifiers to liver cancer dataset for 200 patients. Class distributions are 120 benign and 80 malignant in this dataset.en_UK
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.relationAli L, Hussain A, Li J, Shah A, Sudhakr U, Mahmud M, Zakir U, Yan X, Luo B & Rajak M (2014) Intelligent image processing techniques for cancer progression detection, recognition and prediction in the human liver. In: 2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE). 2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE), Orlando, FL, USA, 09.12.2014-12.12.2014. Piscataway, NJ, USA: IEEE. https://doi.org/10.1109/cicare.2014.7007830en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectCanceren_UK
dc.subjectDiseasesen_UK
dc.subjectImage segmentationen_UK
dc.subjectLiveren_UK
dc.subjectSupport vector machinesen_UK
dc.subjectHistogramsen_UK
dc.subjectClassification algorithmsen_UK
dc.titleIntelligent image processing techniques for cancer progression detection, recognition and prediction in the human liveren_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[07007830.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1109/cicare.2014.7007830en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailjli@cs.stir.ac.uken_UK
dc.citation.btitle2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE)en_UK
dc.citation.conferencedates2014-12-09 - 2014-12-12en_UK
dc.citation.conferencelocationOrlando, FL, USAen_UK
dc.citation.conferencename2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE)en_UK
dc.citation.date15/01/2015en_UK
dc.citation.isbn9781479945276en_UK
dc.publisher.addressPiscataway, NJ, USAen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationKilmarnock NHS Hospitalen_UK
dc.contributor.affiliationKilmarnock NHS Hospitalen_UK
dc.contributor.affiliationUniversity of Antwerpen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.contributor.affiliationUniversity of Strathclydeen_UK
dc.contributor.affiliationAnhui Universityen_UK
dc.contributor.affiliationUcare Foundationen_UK
dc.identifier.scopusid2-s2.0-84922588647en_UK
dc.identifier.wtid1454929en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dc.contributor.orcid0000-0002-6758-0084en_UK
dcterms.dateAccepted2015-01-15en_UK
dc.date.filedepositdate2020-06-19en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorAli, Liaqat|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorLi, Jingpeng|0000-0002-6758-0084en_UK
local.rioxx.authorShah, Amir|en_UK
local.rioxx.authorSudhakr, U|en_UK
local.rioxx.authorMahmud, Mufti|en_UK
local.rioxx.authorZakir, Usman|en_UK
local.rioxx.authorYan, Xiu|en_UK
local.rioxx.authorLuo, Bin|en_UK
local.rioxx.authorRajak, M|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2264-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filename07007830.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9781479945276en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
07007830.pdfFulltext - Published Version1.53 MBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.