Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31374
Appears in Collections:Biological and Environmental Sciences Journal Articles
Peer Review Status: Refereed
Title: Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems
Author(s): Birk, Sebastian
Chapman, Daniel
Carvalho, Laurence
Spears, Bryan M
Andersen, Hans Estrup
Argillier, Christine
Auer, Stefan
Baattrup-Pedersen, Annette
Banin, Lindsay
Beklioğlu, Meryem
Bondar-Kunze, Elisabeth
Borja, Angel
Branco, Paulo
Phillips, Geoff
Willby, Nigel
Contact Email: daniel.chapman@stir.ac.uk
Issue Date: Aug-2020
Date Deposited: 1-Jul-2020
Citation: Birk S, Chapman D, Carvalho L, Spears BM, Andersen HE, Argillier C, Auer S, Baattrup-Pedersen A, Banin L, Beklioğlu M, Bondar-Kunze E, Borja A, Branco P, Phillips G & Willby N (2020) Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution, 4 (8), p. 1060–1068. https://doi.org/10.1038/s41559-020-1216-4
Abstract: Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.
DOI Link: 10.1038/s41559-020-1216-4
Rights: This item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. Publisher allows this work to be made available in this repository. Published in Nature Ecology and Evolution by SpringerNature with the following policy: users may view, print, copy, download and text and data-mine the content, for the purposes of academic research, subject always to the full conditions of use. Any further use is subject to permission from Springer Nature. The conditions of use are not intended to override, should any national law grant further rights to any user.
Notes: Additional co-authors: Tuba Bucak, Anthonie D. Buijse, Ana Cristina Cardoso, Raoul-Marie Couture, Fabien Cremona, Dick de Zwart, Christian K. Feld, M. Teresa Ferreira, Heidrun Feuchtmayr, Mark O. Gessner, Alexander Gieswein, Lidija Globevnik, Daniel Graeber, Wolfram Graf, Cayetano Gutiérrez-Cánovas, Jenica Hanganu, Uğur Işkın, Marko Järvinen, Erik Jeppesen, Niina Kotamäki, Marijn Kuijper, Jan U. Lemm, Shenglan Lu, Anne Lyche Solheim, Ute Mischke, S. Jannicke Moe, Peeter Nõges, Tiina Nõges, Steve J. Ormerod, Yiannis Panagopoulos, Leo Posthuma, Sarai Pouso, Christel Prudhomme, Katri Rankinen, Jes J. Rasmussen, Jessica Richardson, Alban Sagouis, José Maria Santos, Ralf B. Schäfer, Rafaela Schinegger, Stefan Schmutz, Susanne C. Schneider, Lisa Schülting, Pedro Segurado, Kostas Stefanidis, Bernd Sures, Stephen J. Thackeray, Jarno Turunen, María C. Uyarra, Markus Venohr, Peter Carsten von der Ohe & Daniel Hering

Files in This Item:
File Description SizeFormat 
MARS_Synthesis_Manuscript_revised4_30April2020_NEE_submitted_clean_.pdfFulltext - Accepted Version766.17 kBAdobe PDFView/Open



This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.