Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/31314
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Jingpeng | en_UK |
dc.contributor.author | Aickelin, Uwe | en_UK |
dc.contributor.editor | Bullinaria, John A | en_UK |
dc.contributor.editor | Lozano, José A | en_UK |
dc.contributor.editor | Smith, Jim | en_UK |
dc.contributor.editor | Merelo-Guervós, Juan Julián | en_UK |
dc.contributor.editor | Burke, Edmund K | en_UK |
dc.contributor.editor | Yao, Xin | en_UK |
dc.contributor.editor | Rowe, Jonathan E | en_UK |
dc.contributor.editor | Tiňo, Peter | en_UK |
dc.contributor.editor | Kabán, Ata | en_UK |
dc.contributor.editor | Schwefel, Hans-Paul | en_UK |
dc.date.accessioned | 2020-06-20T00:11:50Z | - |
dc.date.available | 2020-06-20T00:11:50Z | - |
dc.date.issued | 2004 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/31314 | - |
dc.description.abstract | Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person’s assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer | en_UK |
dc.relation | Li J & Aickelin U (2004) The Application of Bayesian Optimization and Classifier Systems in Nurse Scheduling. In: Bullinaria JA, Lozano JA, Smith J, Merelo-Guervós JJ, Burke EK, Yao X, Rowe JE, Tiňo P, Kabán A & Schwefel H (eds.) Parallel Problem Solving from Nature - PPSN VIII. Lecture Notes in Computer Science, 3242. PPSN 2004: International Conference on Parallel Problem Solving from Nature, Birmingham, UK, 18.09.2004-22.09.2004. Berlin Heidelberg: Springer, pp. 581-590. https://doi.org/10.1007/978-3-540-30217-9_59 | en_UK |
dc.relation.ispartofseries | Lecture Notes in Computer Science, 3242 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.title | The Application of Bayesian Optimization and Classifier Systems in Nurse Scheduling | en_UK |
dc.type | Conference Paper | en_UK |
dc.rights.embargodate | 2999-12-31 | en_UK |
dc.rights.embargoreason | [Li-Aickelin_Chapter_2004.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1007/978-3-540-30217-9_59 | en_UK |
dc.citation.jtitle | Lecture Notes in Computer Science; Parallel Problem Solving from Nature - PPSN VIII | en_UK |
dc.citation.issn | 1611-3349 | en_UK |
dc.citation.issn | 0302-9743 | en_UK |
dc.citation.issn | 0302-9743 | en_UK |
dc.citation.spage | 581 | en_UK |
dc.citation.epage | 590 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.author.email | jli@cs.stir.ac.uk | en_UK |
dc.citation.btitle | Parallel Problem Solving from Nature - PPSN VIII | en_UK |
dc.citation.conferencedates | 2004-09-18 - 2004-09-22 | en_UK |
dc.citation.conferencelocation | Birmingham, UK | en_UK |
dc.citation.conferencename | PPSN 2004: International Conference on Parallel Problem Solving from Nature | en_UK |
dc.citation.isbn | 9783540230922 | en_UK |
dc.citation.isbn | 9783540302179 | en_UK |
dc.publisher.address | Berlin Heidelberg | en_UK |
dc.contributor.affiliation | University of Nottingham | en_UK |
dc.contributor.affiliation | University of Nottingham | en_UK |
dc.identifier.wtid | 1454965 | en_UK |
dc.contributor.orcid | 0000-0002-6758-0084 | en_UK |
dcterms.dateAccepted | 2004-12-31 | en_UK |
dc.date.filedepositdate | 2020-06-19 | en_UK |
rioxxterms.type | Conference Paper/Proceeding/Abstract | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Li, Jingpeng|0000-0002-6758-0084 | en_UK |
local.rioxx.author | Aickelin, Uwe| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.contributor | Bullinaria, John A| | en_UK |
local.rioxx.contributor | Lozano, José A| | en_UK |
local.rioxx.contributor | Smith, Jim| | en_UK |
local.rioxx.contributor | Merelo-Guervós, Juan Julián| | en_UK |
local.rioxx.contributor | Burke, Edmund K| | en_UK |
local.rioxx.contributor | Yao, Xin| | en_UK |
local.rioxx.contributor | Rowe, Jonathan E| | en_UK |
local.rioxx.contributor | Tiňo, Peter| | en_UK |
local.rioxx.contributor | Kabán, Ata| | en_UK |
local.rioxx.contributor | Schwefel, Hans-Paul| | en_UK |
local.rioxx.freetoreaddate | 2254-12-01 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | Li-Aickelin_Chapter_2004.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 9783540302179 | en_UK |
Appears in Collections: | Computing Science and Mathematics Conference Papers and Proceedings |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Li-Aickelin_Chapter_2004.pdf | Fulltext - Published Version | 229.97 kB | Adobe PDF | Under Permanent Embargo Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.