Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31314
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Jingpengen_UK
dc.contributor.authorAickelin, Uween_UK
dc.contributor.editorBullinaria, John Aen_UK
dc.contributor.editorLozano, José Aen_UK
dc.contributor.editorSmith, Jimen_UK
dc.contributor.editorMerelo-Guervós, Juan Juliánen_UK
dc.contributor.editorBurke, Edmund Ken_UK
dc.contributor.editorYao, Xinen_UK
dc.contributor.editorRowe, Jonathan Een_UK
dc.contributor.editorTiňo, Peteren_UK
dc.contributor.editorKabán, Ataen_UK
dc.contributor.editorSchwefel, Hans-Paulen_UK
dc.date.accessioned2020-06-20T00:11:50Z-
dc.date.available2020-06-20T00:11:50Z-
dc.date.issued2004en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31314-
dc.description.abstractTwo ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person’s assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationLi J & Aickelin U (2004) The Application of Bayesian Optimization and Classifier Systems in Nurse Scheduling. In: Bullinaria JA, Lozano JA, Smith J, Merelo-Guervós JJ, Burke EK, Yao X, Rowe JE, Tiňo P, Kabán A & Schwefel H (eds.) Parallel Problem Solving from Nature - PPSN VIII. Lecture Notes in Computer Science, 3242. PPSN 2004: International Conference on Parallel Problem Solving from Nature, Birmingham, UK, 18.09.2004-22.09.2004. Berlin Heidelberg: Springer, pp. 581-590. https://doi.org/10.1007/978-3-540-30217-9_59en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 3242en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.titleThe Application of Bayesian Optimization and Classifier Systems in Nurse Schedulingen_UK
dc.typeConference Paperen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[Li-Aickelin_Chapter_2004.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/978-3-540-30217-9_59en_UK
dc.citation.jtitleLecture Notes in Computer Science; Parallel Problem Solving from Nature - PPSN VIIIen_UK
dc.citation.issn1611-3349en_UK
dc.citation.issn0302-9743en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage581en_UK
dc.citation.epage590en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailjli@cs.stir.ac.uken_UK
dc.citation.btitleParallel Problem Solving from Nature - PPSN VIIIen_UK
dc.citation.conferencedates2004-09-18 - 2004-09-22en_UK
dc.citation.conferencelocationBirmingham, UKen_UK
dc.citation.conferencenamePPSN 2004: International Conference on Parallel Problem Solving from Natureen_UK
dc.citation.isbn9783540230922en_UK
dc.citation.isbn9783540302179en_UK
dc.publisher.addressBerlin Heidelbergen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.identifier.wtid1454965en_UK
dc.contributor.orcid0000-0002-6758-0084en_UK
dcterms.dateAccepted2004-12-31en_UK
dc.date.filedepositdate2020-06-19en_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorLi, Jingpeng|0000-0002-6758-0084en_UK
local.rioxx.authorAickelin, Uwe|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorBullinaria, John A|en_UK
local.rioxx.contributorLozano, José A|en_UK
local.rioxx.contributorSmith, Jim|en_UK
local.rioxx.contributorMerelo-Guervós, Juan Julián|en_UK
local.rioxx.contributorBurke, Edmund K|en_UK
local.rioxx.contributorYao, Xin|en_UK
local.rioxx.contributorRowe, Jonathan E|en_UK
local.rioxx.contributorTiňo, Peter|en_UK
local.rioxx.contributorKabán, Ata|en_UK
local.rioxx.contributorSchwefel, Hans-Paul|en_UK
local.rioxx.freetoreaddate2254-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameLi-Aickelin_Chapter_2004.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9783540302179en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Li-Aickelin_Chapter_2004.pdfFulltext - Published Version229.97 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.