Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31313
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLi, Jingpengen_UK
dc.contributor.authorKwan, Raymond S Ken_UK
dc.date.accessioned2020-06-20T00:11:30Z-
dc.date.available2020-06-20T00:11:30Z-
dc.date.issued2003-06-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31313-
dc.description.abstractThis paper presents a hybrid genetic algorithm (GA) for the bi-objective public transport driver scheduling problem. A greedy heuristic is used, which constructs a schedule by sequentially selecting shifts, from a very large set of pre-generated legal potential shifts, to cover the remaining work. Individual shifts and the schedule as a whole have to be evaluated in the process. Fuzzy set theory is applied on such evaluations. For individual shifts, their structural efficiency is assessed by fuzzified criteria identified from practical knowledge of the problem domain. A GA is used to derive a near-optimal weight distribution amongst the fuzzified criteria, so that a single-valued weighted evaluation can be computed for each shift. The corresponding schedule constructed utilising the weight distribution is evaluated by the GA’s fitness function, in which the two objectives of minimising the number of shifts and minimising the total cost are formulated as a fuzzy goal. Comparative results on real-world problems are presented.en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationLi J & Kwan RSK (2003) A fuzzy genetic algorithm for driver scheduling. European Journal of Operational Research, 147 (2), pp. 334-344. https://doi.org/10.1016/s0377-2217%2802%2900564-7en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectFuzzy setsen_UK
dc.subjectGenetic algorithmsen_UK
dc.subjectDriver schedulingen_UK
dc.titleA fuzzy genetic algorithm for driver schedulingen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[1-s2.0-S0377221702005647-main.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1016/s0377-2217(02)00564-7en_UK
dc.citation.jtitleEuropean Journal of Operational Researchen_UK
dc.citation.issn0377-2217en_UK
dc.citation.volume147en_UK
dc.citation.issue2en_UK
dc.citation.spage334en_UK
dc.citation.epage344en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailjli@cs.stir.ac.uken_UK
dc.citation.date13/01/2011en_UK
dc.contributor.affiliationUniversity of Leedsen_UK
dc.contributor.affiliationUniversity of Leedsen_UK
dc.identifier.scopusid2-s2.0-0037410247en_UK
dc.identifier.wtid1454975en_UK
dc.contributor.orcid0000-0002-6758-0084en_UK
dcterms.dateAccepted2011-01-13en_UK
dc.date.filedepositdate2020-06-19en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorLi, Jingpeng|0000-0002-6758-0084en_UK
local.rioxx.authorKwan, Raymond S K|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2253-05-02en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filename1-s2.0-S0377221702005647-main.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0377-2217en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S0377221702005647-main.pdfFulltext - Published Version153.74 kBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.