Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/3130
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMcCaig, Chrisen_UK
dc.contributor.authorNorman, Rachelen_UK
dc.contributor.authorShankland, Carronen_UK
dc.date.accessioned2013-10-08T02:04:37Z-
dc.date.available2013-10-08T02:04:37Z-
dc.date.issued2009-03en_UK
dc.identifier.urihttp://hdl.handle.net/1893/3130-
dc.description.abstractIs it possible to symbolically express and analyse an individual-based model of disease spread, including realistic population dynamics? This problem is addressed through the use of process algebra and a novel method for transforming process algebra into Mean Field Equations. A number of stochastic models of population growth are presented, exploring different representations based on alternative views of individual behaviour. The overall population dynamics in terms of mean field equations are derived using a formal and rigorous rewriting based method. These equations are easily compared with the traditionally used deterministic Ordinary Differential Equation models and allow evaluation of those ODE models, challenging their assumptions about system dynamics. The utility of our approach for epidemiology is confirmed by constructing a model combining population growth with disease spread and fitting it to data on HIV in the UK population.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationMcCaig C, Norman R & Shankland C (2009) From Individuals to Populations: A Symbolic Process Algebra Approach to Epidemiology. Mathematics in Computer Science, 2 (3), pp. 535-556. http://www.springerlink.com/content/1661-8270/; https://doi.org/10.1007/s11786-008-0066-2en_UK
dc.rightsPublished in Mathematics in Computer Science by Springer.; The final publication is available at www.springerlink.comen_UK
dc.subjectProcess Algebraen_UK
dc.subjectPopulation Dynamicsen_UK
dc.subjectEpidemiologyen_UK
dc.subjectMean Fielden_UK
dc.subjectEquationsen_UK
dc.subjectSymbolic Computationen_UK
dc.subjectEpidemiologyen_UK
dc.subjectEpidemiology Methodologyen_UK
dc.titleFrom Individuals to Populations: A Symbolic Process Algebra Approach to Epidemiologyen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s11786-008-0066-2en_UK
dc.citation.jtitleMathematics in Computer Scienceen_UK
dc.citation.issn1661-8289en_UK
dc.citation.issn1661-8270en_UK
dc.citation.volume2en_UK
dc.citation.issue3en_UK
dc.citation.spage535en_UK
dc.citation.epage556en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.identifier.urlhttp://www.springerlink.com/content/1661-8270/en_UK
dc.author.emailran@maths.stir.ac.uken_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationMathematicsen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-76349119695en_UK
dc.identifier.wtid829679en_UK
dc.contributor.orcid0000-0002-7398-6064en_UK
dc.contributor.orcid0000-0001-7672-2884en_UK
dcterms.dateAccepted2009-03-31en_UK
dc.date.filedepositdate2011-06-29en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMcCaig, Chris|en_UK
local.rioxx.authorNorman, Rachel|0000-0002-7398-6064en_UK
local.rioxx.authorShankland, Carron|0000-0001-7672-2884en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2011-06-29en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2011-06-29|en_UK
local.rioxx.filenameMCS.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1661-8270en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
MCS.pdfFulltext - Accepted Version262.41 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.