Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/31235
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPimenta, Cristiano Gen_UK
dc.contributor.authorde Sá, Alex G Cen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorPappa, Gisele Len_UK
dc.contributor.editorPaquete, Luísen_UK
dc.contributor.editorZarges, Christineen_UK
dc.date.accessioned2020-06-04T00:02:28Z-
dc.date.available2020-06-04T00:02:28Z-
dc.date.issued2020en_UK
dc.identifier.urihttp://hdl.handle.net/1893/31235-
dc.description.abstractThe field of Automated Machine Learning (AutoML) has as its main goal to automate the process of creating complete Machine Learning (ML) pipelines to any dataset without requiring deep user expertise in ML. Several AutoML methods have been proposed so far, but there is not a single one that really stands out. Furthermore, there is a lack of studies on the characteristics of the fitness landscape of AutoML search spaces. Such analysis may help to understand the performance of different optimization methods for AutoML and how to improve them. This paper adapts classic fitness landscape analysis measures to the context of AutoML. This is a challenging task, as AutoML search spaces include discrete, continuous, categorical and conditional hyperparameters. We propose an ML pipeline representation, a neighborhood definition and a distance metric between pipelines, and use them in the evaluation of the fitness distance correlation (FDC) and the neutrality ratio for a given AutoML search space. Results of FDC are counter-intuitive and require a more in-depth analysis of a range of search spaces. Results of neutrality, in turn, show a strong positive correlation between the mean neutrality ratio and the fitness value.en_UK
dc.language.isoenen_UK
dc.publisherSpringer International Publishingen_UK
dc.relationPimenta CG, de Sá AGC, Ochoa G & Pappa GL (2020) Fitness Landscape Analysis of Automated Machine Learning Search Spaces. In: Paquete L & Zarges C (eds.) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2020. Lecture Notes in Computer Science, 12102. EvoCOP 2020: Evolutionary Computation in Combinatorial Optimization, Seville, Spain, 15.04.2020-17.04.2020. Cham, Switzerland: Springer International Publishing, pp. 114-130. https://doi.org/10.1007/978-3-030-43680-3_8en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 12102en_UK
dc.rightsThis is a post-peer-review, pre-copyedit version of a paper published in Zarges C & Paquete L (eds.) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2020. Lecture Notes in Computer Science, 12102. EvoCOP 2020: European Conference on Evolutionary Computation in Combinatorial Optimization, Seville, Spain, 15.04.2020-17.04.2020. Cham, Switzerland: Springer, pp. 197-213. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-43680-3_8en_UK
dc.rights.urihttps://storre.stir.ac.uk/STORREEndUserLicence.pdfen_UK
dc.subjectFitness landscape analysisen_UK
dc.subjectAutomated Machine Learningen_UK
dc.subjectFitness distance correlationen_UK
dc.subjectNeutralityen_UK
dc.titleFitness Landscape Analysis of Automated Machine Learning Search Spacesen_UK
dc.typeConference Paperen_UK
dc.identifier.doi10.1007/978-3-030-43680-3_8en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage114en_UK
dc.citation.epage130en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.citation.btitleEvolutionary Computation in Combinatorial Optimization. EvoCOP 2020en_UK
dc.citation.conferencedates2020-04-15 - 2020-04-17en_UK
dc.citation.conferencelocationSeville, Spainen_UK
dc.citation.conferencenameEvoCOP 2020: Evolutionary Computation in Combinatorial Optimizationen_UK
dc.citation.date09/04/2020en_UK
dc.citation.isbn9783030436797en_UK
dc.citation.isbn9783030436803en_UK
dc.publisher.addressCham, Switzerlanden_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.identifier.scopusid2-s2.0-85084978973en_UK
dc.identifier.wtid1627441en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2020-01-09en_UK
dcterms.dateAccepted2020-01-09en_UK
dc.date.filedepositdate2020-06-03en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorPimenta, Cristiano G|en_UK
local.rioxx.authorde Sá, Alex G C|en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorPappa, Gisele L|en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.contributorPaquete, Luís|en_UK
local.rioxx.contributorZarges, Christine|en_UK
local.rioxx.freetoreaddate2020-06-03en_UK
local.rioxx.licencehttps://storre.stir.ac.uk/STORREEndUserLicence.pdf|2020-06-03|en_UK
local.rioxx.filenameFLAutoMLEvoCOP2020.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source9783030436803en_UK
Appears in Collections:Computing Science and Mathematics Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
FLAutoMLEvoCOP2020.pdfFulltext - Accepted Version517.24 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.