Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/3103
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLukaszewski, Roman Aen_UK
dc.contributor.authorYates, Adam Men_UK
dc.contributor.authorJackson, Matthew Cen_UK
dc.contributor.authorSwingler, Kevinen_UK
dc.contributor.authorScherer, John Men_UK
dc.contributor.authorSimpson, Andrew J Hen_UK
dc.contributor.authorSadler, Paulen_UK
dc.contributor.authorMcQuillan, Peteren_UK
dc.contributor.authorTitball, Richard Wen_UK
dc.contributor.authorBrooks, Timothy J Gen_UK
dc.contributor.authorPearce, Michael Jen_UK
dc.date.accessioned2013-06-08T21:48:09Z-
dc.date.available2013-06-08T21:48:09Zen_UK
dc.date.issued2008-07en_UK
dc.identifier.urihttp://hdl.handle.net/1893/3103-
dc.description.abstractPostoperative or posttraumatic sepsis remains one of the leading causes of morbidity and mortality in hospital populations, especially in populations in intensive care units (ICUs). Central to the successful control of sepsis-associated infections is the ability to rapidly diagnose and treat disease. The ability to identify sepsis patients before they show any symptoms would have major benefits for the health care of ICU patients. For this study, 92 ICU patients who had undergone procedures that increased the risk of developing sepsis were recruited upon admission. Blood samples were taken daily until either a clinical diagnosis of sepsis was made or until the patient was discharged from the ICU. In addition to standard clinical and laboratory parameter testing, the levels of expression of interleukin-1 (IL-1 ), IL-6, IL-8, and IL-10, tumor necrosis factor- , FasL, and CCL2 mRNA were also measured by real-time reverse transcriptase PCR. The results of the analysis of the data using a nonlinear technique (neural network analysis) demonstrated discernible differences prior to the onset of overt sepsis. Neural networks using cytokine and chemokine data were able to correctly predict patient outcomes in an average of 83.09% of patient cases between 4 and 1 days before clinical diagnosis with high sensitivity and selectivity (91.43% and 80.20%, respectively). The neural network also had a predictive accuracy of 94.55% when data from 22 healthy volunteers was analyzed in conjunction with the ICU patient data. Our observations from this pilot study indicate that it may be possible to predict the onset of sepsis in a mixed patient population by using a panel of just seven biomarkers.en_UK
dc.language.isoenen_UK
dc.publisherAmerican Society for Microbiologyen_UK
dc.relationLukaszewski RA, Yates AM, Jackson MC, Swingler K, Scherer JM, Simpson AJH, Sadler P, McQuillan P, Titball RW, Brooks TJG & Pearce MJ (2008) Presymptomatic Prediction of Sepsis in Intensive Care Unit Patients. Clinical and Vaccine Immunology, 15 (7), pp. 1089-1094. http://cdli.asm.org/cgi/content/abstract/15/7/1089; https://doi.org/10.1128/CVI.00486-07en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author; you can only request a copy if you wish to use this work for your own research or private study.; From journal web page: "ASM makes the final, typeset articles from its primary-research journals available free of charge on the ASM Journals and PMC websites 6 months after final publication" http://journals.asm.org/misc/ASM_Author_Statement.dtlen_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectSepsisen_UK
dc.subjectPredictionen_UK
dc.subjectNeural Networken_UK
dc.subjectIntensive care unitsen_UK
dc.subjectSepticemiaen_UK
dc.subjectPatient monitoringen_UK
dc.titlePresymptomatic Prediction of Sepsis in Intensive Care Unit Patientsen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate3000-01-01en_UK
dc.rights.embargoreason[sepsis.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1128/CVI.00486-07en_UK
dc.citation.jtitleClinical and Vaccine Immunologyen_UK
dc.citation.issn1556-679Xen_UK
dc.citation.issn1556-6811en_UK
dc.citation.volume15en_UK
dc.citation.issue7en_UK
dc.citation.spage1089en_UK
dc.citation.epage1094en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttp://cdli.asm.org/cgi/content/abstract/15/7/1089en_UK
dc.author.emailkms@cs.stir.ac.uken_UK
dc.contributor.affiliationDefence Science and Technology Laboratoryen_UK
dc.contributor.affiliationDefence Science and Technology Laboratoryen_UK
dc.contributor.affiliationDefence Science and Technology Laboratoryen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationDefence Science and Technology Laboratoryen_UK
dc.contributor.affiliationDefence Science and Technology Laboratoryen_UK
dc.contributor.affiliationQueen Alexandra Hospitalen_UK
dc.contributor.affiliationQueen Alexandra Hospitalen_UK
dc.contributor.affiliationUniversity of Exeteren_UK
dc.contributor.affiliationHealth Protection Agencyen_UK
dc.contributor.affiliationDefence Science and Technology Laboratoryen_UK
dc.identifier.isiWOS:000258667100008en_UK
dc.identifier.scopusid2-s2.0-47649096699en_UK
dc.identifier.wtid829778en_UK
dc.contributor.orcid0000-0002-4517-9433en_UK
dcterms.dateAccepted2008-07-31en_UK
dc.date.filedepositdate2011-06-21en_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorLukaszewski, Roman A|en_UK
local.rioxx.authorYates, Adam M|en_UK
local.rioxx.authorJackson, Matthew C|en_UK
local.rioxx.authorSwingler, Kevin|0000-0002-4517-9433en_UK
local.rioxx.authorScherer, John M|en_UK
local.rioxx.authorSimpson, Andrew J H|en_UK
local.rioxx.authorSadler, Paul|en_UK
local.rioxx.authorMcQuillan, Peter|en_UK
local.rioxx.authorTitball, Richard W|en_UK
local.rioxx.authorBrooks, Timothy J G|en_UK
local.rioxx.authorPearce, Michael J|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate3000-01-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenamesepsis.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1556-6811en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
sepsis.pdfFulltext - Published Version292.74 kBAdobe PDFUnder Embargo until 3000-01-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.