Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/30976
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liu, Tao | en_UK |
dc.contributor.author | Yang, Ziyuan | en_UK |
dc.contributor.author | Marino, Armando | en_UK |
dc.contributor.author | Gao, Gui | en_UK |
dc.contributor.author | Yang, Jian | en_UK |
dc.date.accessioned | 2020-04-08T00:05:26Z | - |
dc.date.available | 2020-04-08T00:05:26Z | - |
dc.date.issued | 2020-09 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/30976 | - |
dc.description.abstract | Constant false alarm rate (CFAR) algorithms using a local training window are widely used for ship detection with synthetic aperture radar (SAR) imagery. However, when the density of the targets is high, such as in busy shipping lines and crowded harbors, the background statistics may be contaminated by the presence of nearby targets in the training window. Recently, a robust CFAR detector based on truncated statistics (TS) was proposed. However, the truncation of data in the format of polarimetric covariance matrices is much more complicated with respect to the truncation of intensity (single polarization) data. In this article, a polarimetric whitening filter TS CFAR (PWF-TS-CFAR) is proposed to estimate the background parameters accurately in the contaminated sea clutter for PolSAR imagery. The CFAR detector uses a polarimetric whitening filter (PWF) to turn the multidimensional problem to a 1-D case. It uses truncation to exclude possible statistically interfering outliers and uses TS to model the remaining background samples. The algorithm does not require prior knowledge of the interfering targets, and it is performed iteratively and adaptively to derive better estimates of the polarimetric covariance matrix (although this is computationally expensive). The PWF-TS-CFAR detector provides accurate background clutter modeling, a stable false alarm property, and improves the detection performance in high-target-density situations. RadarSat2 data are used to verify our derivations, and the results are in line with the theory. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_UK |
dc.relation | Liu T, Yang Z, Marino A, Gao G & Yang J (2020) Robust CFAR Detector Based on Truncated Statistics for Polarimetric Synthetic Aperture Radar. IEEE Transactions on Geoscience and Remote Sensing, 58 (9), pp. 6731 - 6747. https://doi.org/10.1109/tgrs.2020.2979252 | en_UK |
dc.rights | © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en_UK |
dc.subject | Electrical and Electronic Engineering | en_UK |
dc.subject | General Earth and Planetary Sciences | en_UK |
dc.title | Robust CFAR Detector Based on Truncated Statistics for Polarimetric Synthetic Aperture Radar | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1109/tgrs.2020.2979252 | en_UK |
dc.citation.jtitle | IEEE Transactions on Geoscience and Remote Sensing | en_UK |
dc.citation.issn | 1558-0644 | en_UK |
dc.citation.issn | 0196-2892 | en_UK |
dc.citation.volume | 58 | en_UK |
dc.citation.issue | 9 | en_UK |
dc.citation.spage | 6731 | en_UK |
dc.citation.epage | 6747 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.contributor.funder | National Natural Science Foundation of China | en_UK |
dc.contributor.funder | Field Foundation of Illinois | en_UK |
dc.contributor.funder | Key Research Plan of Hunan Province | en_UK |
dc.contributor.funder | National Natural Science Foundation of China | en_UK |
dc.contributor.funder | National Natural Science Foundation of China | en_UK |
dc.author.email | armando.marino@stir.ac.uk | en_UK |
dc.citation.date | 19/03/2020 | en_UK |
dc.contributor.affiliation | PLA Naval University of Engineering | en_UK |
dc.contributor.affiliation | PLA Naval University of Engineering | en_UK |
dc.contributor.affiliation | Biological and Environmental Sciences | en_UK |
dc.contributor.affiliation | Southwest Jiaotong University | en_UK |
dc.contributor.affiliation | Tsinghua University | en_UK |
dc.identifier.isi | WOS:000564455700054 | en_UK |
dc.identifier.scopusid | 2-s2.0-85089695829 | en_UK |
dc.identifier.wtid | 1588230 | en_UK |
dc.contributor.orcid | 0000-0002-9596-4536 | en_UK |
dc.contributor.orcid | 0000-0002-4531-3102 | en_UK |
dc.contributor.orcid | 0000-0003-4596-5829 | en_UK |
dc.contributor.orcid | 0000-0002-0036-9233 | en_UK |
dc.date.accepted | 2020-03-19 | en_UK |
dcterms.dateAccepted | 2020-03-19 | en_UK |
dc.date.filedepositdate | 2020-04-06 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Liu, Tao|0000-0002-9596-4536 | en_UK |
local.rioxx.author | Yang, Ziyuan| | en_UK |
local.rioxx.author | Marino, Armando|0000-0002-4531-3102 | en_UK |
local.rioxx.author | Gao, Gui|0000-0003-4596-5829 | en_UK |
local.rioxx.author | Yang, Jian|0000-0002-0036-9233 | en_UK |
local.rioxx.project | 61771483|National Natural Science Foundation of China| | en_UK |
local.rioxx.project | 61404160109|Field Foundation of Illinois| | en_UK |
local.rioxx.project | 2019SK2173|Key Research Plan of Hunan Province| | en_UK |
local.rioxx.project | 61490693|National Natural Science Foundation of China| | en_UK |
local.rioxx.project | 41822105|National Natural Science Foundation of China| | en_UK |
local.rioxx.freetoreaddate | 2020-04-06 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2020-04-06| | en_UK |
local.rioxx.filename | 1Robust CFAR Detector Based on Truncated Statistics GGD_AM6_AM.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1558-0644 | en_UK |
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1Robust CFAR Detector Based on Truncated Statistics GGD_AM6_AM.pdf | Fulltext - Accepted Version | 2.24 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.