Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30976
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Taoen_UK
dc.contributor.authorYang, Ziyuanen_UK
dc.contributor.authorMarino, Armandoen_UK
dc.contributor.authorGao, Guien_UK
dc.contributor.authorYang, Jianen_UK
dc.date.accessioned2020-04-08T00:05:26Z-
dc.date.available2020-04-08T00:05:26Z-
dc.date.issued2020-09en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30976-
dc.description.abstractConstant false alarm rate (CFAR) algorithms using a local training window are widely used for ship detection with synthetic aperture radar (SAR) imagery. However, when the density of the targets is high, such as in busy shipping lines and crowded harbors, the background statistics may be contaminated by the presence of nearby targets in the training window. Recently, a robust CFAR detector based on truncated statistics (TS) was proposed. However, the truncation of data in the format of polarimetric covariance matrices is much more complicated with respect to the truncation of intensity (single polarization) data. In this article, a polarimetric whitening filter TS CFAR (PWF-TS-CFAR) is proposed to estimate the background parameters accurately in the contaminated sea clutter for PolSAR imagery. The CFAR detector uses a polarimetric whitening filter (PWF) to turn the multidimensional problem to a 1-D case. It uses truncation to exclude possible statistically interfering outliers and uses TS to model the remaining background samples. The algorithm does not require prior knowledge of the interfering targets, and it is performed iteratively and adaptively to derive better estimates of the polarimetric covariance matrix (although this is computationally expensive). The PWF-TS-CFAR detector provides accurate background clutter modeling, a stable false alarm property, and improves the detection performance in high-target-density situations. RadarSat2 data are used to verify our derivations, and the results are in line with the theory.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationLiu T, Yang Z, Marino A, Gao G & Yang J (2020) Robust CFAR Detector Based on Truncated Statistics for Polarimetric Synthetic Aperture Radar. IEEE Transactions on Geoscience and Remote Sensing, 58 (9), pp. 6731 - 6747. https://doi.org/10.1109/tgrs.2020.2979252en_UK
dc.rights© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectElectrical and Electronic Engineeringen_UK
dc.subjectGeneral Earth and Planetary Sciencesen_UK
dc.titleRobust CFAR Detector Based on Truncated Statistics for Polarimetric Synthetic Aperture Radaren_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/tgrs.2020.2979252en_UK
dc.citation.jtitleIEEE Transactions on Geoscience and Remote Sensingen_UK
dc.citation.issn1558-0644en_UK
dc.citation.issn0196-2892en_UK
dc.citation.volume58en_UK
dc.citation.issue9en_UK
dc.citation.spage6731en_UK
dc.citation.epage6747en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderNational Natural Science Foundation of Chinaen_UK
dc.contributor.funderField Foundation of Illinoisen_UK
dc.contributor.funderKey Research Plan of Hunan Provinceen_UK
dc.contributor.funderNational Natural Science Foundation of Chinaen_UK
dc.contributor.funderNational Natural Science Foundation of Chinaen_UK
dc.author.emailarmando.marino@stir.ac.uken_UK
dc.citation.date19/03/2020en_UK
dc.contributor.affiliationPLA Naval University of Engineeringen_UK
dc.contributor.affiliationPLA Naval University of Engineeringen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationSouthwest Jiaotong Universityen_UK
dc.contributor.affiliationTsinghua Universityen_UK
dc.identifier.isiWOS:000564455700054en_UK
dc.identifier.scopusid2-s2.0-85089695829en_UK
dc.identifier.wtid1588230en_UK
dc.contributor.orcid0000-0002-9596-4536en_UK
dc.contributor.orcid0000-0002-4531-3102en_UK
dc.contributor.orcid0000-0003-4596-5829en_UK
dc.contributor.orcid0000-0002-0036-9233en_UK
dc.date.accepted2020-03-19en_UK
dcterms.dateAccepted2020-03-19en_UK
dc.date.filedepositdate2020-04-06en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorLiu, Tao|0000-0002-9596-4536en_UK
local.rioxx.authorYang, Ziyuan|en_UK
local.rioxx.authorMarino, Armando|0000-0002-4531-3102en_UK
local.rioxx.authorGao, Gui|0000-0003-4596-5829en_UK
local.rioxx.authorYang, Jian|0000-0002-0036-9233en_UK
local.rioxx.project61771483|National Natural Science Foundation of China|en_UK
local.rioxx.project61404160109|Field Foundation of Illinois|en_UK
local.rioxx.project2019SK2173|Key Research Plan of Hunan Province|en_UK
local.rioxx.project61490693|National Natural Science Foundation of China|en_UK
local.rioxx.project41822105|National Natural Science Foundation of China|en_UK
local.rioxx.freetoreaddate2020-04-06en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2020-04-06|en_UK
local.rioxx.filename1Robust CFAR Detector Based on Truncated Statistics GGD_AM6_AM.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1558-0644en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
1Robust CFAR Detector Based on Truncated Statistics GGD_AM6_AM.pdfFulltext - Accepted Version2.24 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.