Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30936
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFeng, Tan Qinen_UK
dc.contributor.authorChoy, Murphyen_UK
dc.contributor.authorLaik, Ma Nangen_UK
dc.date.accessioned2020-04-03T00:02:24Z-
dc.date.available2020-04-03T00:02:24Z-
dc.date.issued2020en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30936-
dc.description.abstractA deep learning framework like Generative Adversarial Network (GAN) has gained popularity in recent years for handling many different computer visions related problems. In this research, instead of focusing on generating the near-real images using GAN, the aim is to develop a comprehensive GAN framework for book sales ranks prediction, based on the historical sales rankings and different attributes collected from the Amazon site. Different analysis stages have been conducted in the research. In this research, a comprehensive data preprocessing is required before the modeling and evaluation. Extensive predevelopment on the data, related features selections for predicting the sales rankings, and several data transformation techniques are being applied before generating the models. Later then various models are being trained and evaluated on prediction results. In the GAN architecture, the generator network that used to generate the features is being built, and the discriminator network that used to differentiate between real and fake features is being trained before the predictions. Lastly, the regression GAN model prediction results are compared against the different neural network models like multilayer perceptron, deep belief network, convolution neural network.en_UK
dc.language.isoenen_UK
dc.publisherSAI Organizationen_UK
dc.relationFeng TQ, Choy M & Laik MN (2020) Predicting book sales trend using deep learning framework. International Journal of Advanced Computer Science and Applications, 11 (2), pp. 28-39. https://doi.org/10.14569/IJACSA.2020.0110205en_UK
dc.rightsThis is an open access article licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly citeden_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectGenerative adversarial networken_UK
dc.subjectdeep learning frameworken_UK
dc.subjectbook sales forecastingen_UK
dc.subjectregressionen_UK
dc.titlePredicting book sales trend using deep learning frameworken_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.14569/IJACSA.2020.0110205en_UK
dc.citation.jtitleInternational Journal of Advanced Computer Science and Applicationsen_UK
dc.citation.issn2156-5570en_UK
dc.citation.issn2158-107Xen_UK
dc.citation.volume11en_UK
dc.citation.issue2en_UK
dc.citation.spage28en_UK
dc.citation.epage39en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationSingapore University of Social Sciencesen_UK
dc.identifier.isiWOS:000518468600005en_UK
dc.identifier.scopusid2-s2.0-85081248935en_UK
dc.identifier.wtid1594834en_UK
dc.date.accepted2020-04-01en_UK
dcterms.dateAccepted2020-04-01en_UK
dc.date.filedepositdate2020-04-02en_UK
rioxxterms.apcnot chargeden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorFeng, Tan Qin|en_UK
local.rioxx.authorChoy, Murphy|en_UK
local.rioxx.authorLaik, Ma Nang|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2020-04-02en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2020-04-02|en_UK
local.rioxx.filenamePaper_5-Predicting_Book_Sales_Trend_using_Deep_Learning.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2156-5570en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Paper_5-Predicting_Book_Sales_Trend_using_Deep_Learning.pdfFulltext - Published Version1.22 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.