Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30886
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCuyt, Annieen_UK
dc.contributor.authorHou, Yuanen_UK
dc.contributor.authorKnaepkens, Ferreen_UK
dc.contributor.authorLee, Wen-shinen_UK
dc.date.accessioned2020-03-31T00:04:12Z-
dc.date.available2020-03-31T00:04:12Z-
dc.date.issued2020en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30886-
dc.description.abstractWe present a d-dimensional exponential analysis algorithm that offers a range of advantages compared to other methods. The technique does not suffer the curse of dimensionality and only needs O((d + 1)n) samples for the analysis of an n-sparse expression. It does not require a prior estimate of the sparsity n of the d-variate exponential sum. The method can work with sub-Nyquist sampled data and offers a validation step, which is very useful in low SNR conditions. A favourable computation cost results from the fact that d independent smaller systems are solved instead of one large system incorporating all measurements simultaneously. So the method also lends itself easily to a parallel execution. Our motivation to develop the technique comes from 2D and 3D radar imaging and is therefore illustrated on such examples.en_UK
dc.language.isoenen_UK
dc.publisherSociety for Industrial and Applied Mathematicsen_UK
dc.relationCuyt A, Hou Y, Knaepkens F & Lee W (2020) Sparse multidimensional exponential analysis with an application to radar imaging. SIAM Journal on Scientific Computing, 42 (3), p. B675–B695. https://doi.org/10.1137/19M1278004en_UK
dc.rightsPublisher policy allows this work to be made available in this repository. Published in SIAM Journal on Scientific Computing by SIAM. The original publication is available at: https://doi.org/10.1137/19M1278004en_UK
dc.rights.urihttps://storre.stir.ac.uk/STORREEndUserLicence.pdfen_UK
dc.subjectexponentional analysisen_UK
dc.subjectparametric methoden_UK
dc.subjectmultidimensionalen_UK
dc.subjectsparse modelen_UK
dc.subjectsparse dataen_UK
dc.subjectinverse problemsen_UK
dc.titleSparse multidimensional exponential analysis with an application to radar imagingen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1137/19M1278004en_UK
dc.citation.jtitleSIAM Journal on Scientific Computingen_UK
dc.citation.issn1095-7197en_UK
dc.citation.issn1064-8275en_UK
dc.citation.volume42en_UK
dc.citation.issue3en_UK
dc.citation.spageB675en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderResearch Foundation - Flandersen_UK
dc.author.emailwen-shin.lee@stir.ac.uken_UK
dc.citation.date14/05/2020en_UK
dc.contributor.affiliationUniversity of Antwerpen_UK
dc.contributor.affiliationUniversity of Antwerpen_UK
dc.contributor.affiliationUniversity of Antwerpen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000551255700024en_UK
dc.identifier.scopusid2-s2.0-85086018245en_UK
dc.identifier.wtid1577586en_UK
dc.contributor.orcid0000-0002-2808-3739en_UK
dc.date.accepted2020-02-14en_UK
dcterms.dateAccepted2020-02-14en_UK
dc.date.filedepositdate2020-02-28en_UK
dc.subject.tagSignal Processingen_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorCuyt, Annie|en_UK
local.rioxx.authorHou, Yuan|en_UK
local.rioxx.authorKnaepkens, Ferre|en_UK
local.rioxx.authorLee, Wen-shin|0000-0002-2808-3739en_UK
local.rioxx.projectProject ID unknown|Research Foundation - Flanders|en_UK
local.rioxx.freetoreaddate2020-03-30en_UK
local.rioxx.licencehttps://storre.stir.ac.uk/STORREEndUserLicence.pdf|2020-03-30|en_UK
local.rioxx.filenameSJSC.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1095-7197en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
SJSC.pdfFulltext - Accepted Version1.6 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.