Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/30883
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Thomson, Sarah L | en_UK |
dc.contributor.author | Ochoa, Gabriela | en_UK |
dc.contributor.author | Verel, Sébastien | en_UK |
dc.contributor.author | Veerapen, Nadarajen | en_UK |
dc.date.accessioned | 2020-03-31T00:03:04Z | - |
dc.date.available | 2020-03-31T00:03:04Z | - |
dc.date.issued | 2020-12 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/30883 | - |
dc.description.abstract | Connection patterns among Local Optima Networks (LONs) can inform heuristic design for optimisation. LON research has predominantly required complete enumeration of a fitness landscape, thereby restricting analysis to problems diminutive in size compared to real-life situations. LON sampling algorithms are therefore important. In this paper, we study LON construction algorithms for the Quadratic Assignment Problem (QAP). Using machine learning, we use estimated LON features to predict search performance for competitive heuristics used in the QAP domain. The results show that by using random forest regression, LON construction algorithms produce fitness landscape features which can explain almost all search variance. We find that LON samples better relate to search than enumerated LONs do. The importance of fitness levels of sampled LONs in search predictions is crystallised. Features from LONs produced by different algorithms are combined in predictions for the first time, with promising results for this ‘super-sampling’: a model to predict tabu search success explained 99% of variance. Arguments are made for the use-case of each LON algorithm and for combining the exploitative process of one with the exploratory optimisation of the other. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | MIT Press - Journals | en_UK |
dc.relation | Thomson SL, Ochoa G, Verel S & Veerapen N (2020) Inferring Future Landscapes: Sampling the Local Optima Level. Evolutionary Computation, 28 (4), pp. 621-641. https://doi.org/10.1162/evco_a_00271 | en_UK |
dc.rights | © 2020 Massachusetts Institute of Technology. Accepted for publication in Evolutionary Computing: https://doi.org/10.1162/evco_a_00271 | en_UK |
dc.rights.uri | https://storre.stir.ac.uk/STORREEndUserLicence.pdf | en_UK |
dc.subject | Combinatorial Optimisation | en_UK |
dc.subject | Fitness Landscapes | en_UK |
dc.subject | Local Optima Networks | en_UK |
dc.subject | Funnel Landscapes. | en_UK |
dc.title | Inferring Future Landscapes: Sampling the Local Optima Level | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1162/evco_a_00271 | en_UK |
dc.identifier.pmid | 32101026 | en_UK |
dc.citation.jtitle | Evolutionary Computation | en_UK |
dc.citation.issn | 1530-9304 | en_UK |
dc.citation.issn | 1063-6560 | en_UK |
dc.citation.volume | 28 | en_UK |
dc.citation.issue | 4 | en_UK |
dc.citation.spage | 621 | en_UK |
dc.citation.epage | 641 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.author.email | s.l.thomson@stir.ac.uk | en_UK |
dc.citation.date | 26/02/2020 | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | University of Littoral Côte d'Opale | en_UK |
dc.contributor.affiliation | Lille University of Science & Technology (University of Lille 1) | en_UK |
dc.identifier.isi | WOS:000594686300004 | en_UK |
dc.identifier.scopusid | 2-s2.0-85091191021 | en_UK |
dc.identifier.wtid | 1576519 | en_UK |
dc.contributor.orcid | 0000-0001-6971-7817 | en_UK |
dc.contributor.orcid | 0000-0001-7649-5669 | en_UK |
dc.date.accepted | 2020-02-12 | en_UK |
dcterms.dateAccepted | 2020-02-12 | en_UK |
dc.date.filedepositdate | 2020-03-30 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Thomson, Sarah L|0000-0001-6971-7817 | en_UK |
local.rioxx.author | Ochoa, Gabriela|0000-0001-7649-5669 | en_UK |
local.rioxx.author | Verel, Sébastien| | en_UK |
local.rioxx.author | Veerapen, Nadarajen| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 2020-03-30 | en_UK |
local.rioxx.licence | https://storre.stir.ac.uk/STORREEndUserLicence.pdf|2020-03-30| | en_UK |
local.rioxx.filename | ecj-manuscript.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1530-9304 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ecj-manuscript.pdf | Fulltext - Accepted Version | 437.3 kB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.