Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30883
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThomson, Sarah Len_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorVerel, Sébastienen_UK
dc.contributor.authorVeerapen, Nadarajenen_UK
dc.date.accessioned2020-03-31T00:03:04Z-
dc.date.available2020-03-31T00:03:04Z-
dc.date.issued2020-12en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30883-
dc.description.abstractConnection patterns among Local Optima Networks (LONs) can inform heuristic design for optimisation. LON research has predominantly required complete enumeration of a fitness landscape, thereby restricting analysis to problems diminutive in size compared to real-life situations. LON sampling algorithms are therefore important. In this paper, we study LON construction algorithms for the Quadratic Assignment Problem (QAP). Using machine learning, we use estimated LON features to predict search performance for competitive heuristics used in the QAP domain. The results show that by using random forest regression, LON construction algorithms produce fitness landscape features which can explain almost all search variance. We find that LON samples better relate to search than enumerated LONs do. The importance of fitness levels of sampled LONs in search predictions is crystallised. Features from LONs produced by different algorithms are combined in predictions for the first time, with promising results for this ‘super-sampling’: a model to predict tabu search success explained 99% of variance. Arguments are made for the use-case of each LON algorithm and for combining the exploitative process of one with the exploratory optimisation of the other.en_UK
dc.language.isoenen_UK
dc.publisherMIT Press - Journalsen_UK
dc.relationThomson SL, Ochoa G, Verel S & Veerapen N (2020) Inferring Future Landscapes: Sampling the Local Optima Level. Evolutionary Computation, 28 (4), pp. 621-641. https://doi.org/10.1162/evco_a_00271en_UK
dc.rights© 2020 Massachusetts Institute of Technology. Accepted for publication in Evolutionary Computing: https://doi.org/10.1162/evco_a_00271en_UK
dc.rights.urihttps://storre.stir.ac.uk/STORREEndUserLicence.pdfen_UK
dc.subjectCombinatorial Optimisationen_UK
dc.subjectFitness Landscapesen_UK
dc.subjectLocal Optima Networksen_UK
dc.subjectFunnel Landscapes.en_UK
dc.titleInferring Future Landscapes: Sampling the Local Optima Levelen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1162/evco_a_00271en_UK
dc.identifier.pmid32101026en_UK
dc.citation.jtitleEvolutionary Computationen_UK
dc.citation.issn1530-9304en_UK
dc.citation.issn1063-6560en_UK
dc.citation.volume28en_UK
dc.citation.issue4en_UK
dc.citation.spage621en_UK
dc.citation.epage641en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emails.l.thomson@stir.ac.uken_UK
dc.citation.date26/02/2020en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Littoral Côte d'Opaleen_UK
dc.contributor.affiliationLille University of Science & Technology (University of Lille 1)en_UK
dc.identifier.isiWOS:000594686300004en_UK
dc.identifier.scopusid2-s2.0-85091191021en_UK
dc.identifier.wtid1576519en_UK
dc.contributor.orcid0000-0001-6971-7817en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.date.accepted2020-02-12en_UK
dcterms.dateAccepted2020-02-12en_UK
dc.date.filedepositdate2020-03-30en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorThomson, Sarah L|0000-0001-6971-7817en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorVerel, Sébastien|en_UK
local.rioxx.authorVeerapen, Nadarajen|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2020-03-30en_UK
local.rioxx.licencehttps://storre.stir.ac.uk/STORREEndUserLicence.pdf|2020-03-30|en_UK
local.rioxx.filenameecj-manuscript.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1530-9304en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
ecj-manuscript.pdfFulltext - Accepted Version437.3 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.