Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30819
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorMachado, Gabriel L Sen_UK
dc.contributor.authorGama, Pedro H Ten_UK
dc.contributor.authorDa Silva, Caio C Ven_UK
dc.contributor.authorBalaniuk, Remisen_UK
dc.contributor.authorSantos, Jefersson A Dosen_UK
dc.date.accessioned2020-03-25T01:03:21Z-
dc.date.available2020-03-25T01:03:21Z-
dc.date.issued2020-02en_UK
dc.identifier.other739en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30819-
dc.description.abstractSoil erosion is considered one of the most expensive natural hazards with a high impact on several infrastructure assets. Among them, railway lines are one of the most likely constructions for the appearance of erosion and, consequently, one of the most troublesome due to the maintenance costs, risks of derailments, and so on. Therefore, it is fundamental to identify and monitor erosion in railway lines to prevent major consequences. Currently, erosion identification is manually performed by humans using huge image sets, a time-consuming and slow task. Hence, automatic machine learning methods appear as an appealing alternative. A crucial step for automatic erosion identification is to create a good feature representation. Towards such objective, deep learning can learn data-driven features and classifiers. In this paper, we propose a novel deep learning-based framework capable of performing erosion identification in railway lines. Six techniques were evaluated and the best one, Dynamic Dilated ConvNet, was integrated into this framework that was then encapsulated into a new ArcGIS plugin to facilitate its use by non-programmer users. To analyze such techniques, we also propose a new dataset, composed of almost 2,000 high-resolution images.en_UK
dc.language.isoenen_UK
dc.publisherMDPIen_UK
dc.relationNogueira K, Machado GLS, Gama PHT, Da Silva CCV, Balaniuk R & Santos JAD (2020) Facing Erosion Identification in Railway Lines Using Pixel-wise Deep-based Approaches. <i>Remote Sensing</i>, 12 (4), Art. No.: 739. https://doi.org/10.3390/rs12040739en_UK
dc.rightsThis is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citeden_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectDeep Learningen_UK
dc.subjectRemote Sensingen_UK
dc.subjectErosion Identificationen_UK
dc.subjectHigh-Resolution Images 14en_UK
dc.titleFacing Erosion Identification in Railway Lines Using Pixel-wise Deep-based Approachesen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/rs12040739en_UK
dc.citation.jtitleRemote Sensingen_UK
dc.citation.issn2072-4292en_UK
dc.citation.volume12en_UK
dc.citation.issue4en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.contributor.funderBrazilian National Research Councilen_UK
dc.citation.date23/02/2020en_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationUniversidade Católica de Brasíliaen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.identifier.isiWOS:000519564600150en_UK
dc.identifier.scopusid2-s2.0-85080927654en_UK
dc.identifier.wtid1557136en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.date.accepted2020-02-06en_UK
dcterms.dateAccepted2020-02-06en_UK
dc.date.filedepositdate2020-03-24en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authorMachado, Gabriel L S|en_UK
local.rioxx.authorGama, Pedro H T|en_UK
local.rioxx.authorDa Silva, Caio C V|en_UK
local.rioxx.authorBalaniuk, Remis|en_UK
local.rioxx.authorSantos, Jefersson A Dos|en_UK
local.rioxx.projectProject ID unknown|Brazilian National Research Council|en_UK
local.rioxx.freetoreaddate2020-03-24en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2020-03-24|en_UK
local.rioxx.filenameremotesensing-12-00739.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2072-4292en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
remotesensing-12-00739.pdfFulltext - Published Version8.15 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.