Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30765
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBush, Emma Ren_UK
dc.contributor.authorMitchard, Edward T Aen_UK
dc.contributor.authorSilva, Thiago S Fen_UK
dc.contributor.authorDimoto, Edmonden_UK
dc.contributor.authorDimbonda, Pacômeen_UK
dc.contributor.authorMakaga, Loïcen_UK
dc.contributor.authorAbernethy, Katharineen_UK
dc.date.accessioned2020-02-29T01:19:13Z-
dc.date.available2020-02-29T01:19:13Z-
dc.date.issued2020-02en_UK
dc.identifier.other429en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30765-
dc.description.abstractSpatial and temporal patterns of tropical leaf renewal are poorly understood and poorly parameterized in modern Earth System Models due to lack of data. Remote sensing has great potential for sampling leaf phenology across tropical landscapes but until now has been impeded by lack of ground-truthing, cloudiness, poor spatial resolution, and the cryptic nature of incremental leaf turnover in many tropical plants. To our knowledge, satellite data have never been used to monitor individual crown leaf phenology in the tropics, an innovation that would be a major breakthrough for individual and species-level ecology and improve climate change predictions for the tropics. In this paper, we assessed whether satellite data can detect leaf turnover for individual trees using ground observations of a candidate tropical tree species, Moabi (Baillonella toxisperma), which has a mega-crown visible from space. We identified and delineated Moabi crowns at Lopé NP, Gabon from satellite imagery using ground coordinates and extracted high spatial and temporal resolution, optical, and synthetic-aperture radar (SAR) timeseries data for each tree. We normalized these data relative to the surrounding forest canopy and combined them with concurrent monthly crown observations of new, mature, and senescent leaves recorded from the ground. We analyzed the relationship between satellite and ground observations using generalized linear mixed models (GLMMs). Ground observations of leaf turnover were significantly correlated with optical indices derived from Sentinel-2 optical data (the normalized difference vegetation index and the green leaf index), but not with SAR data derived from Sentinel-1. We demonstrate, perhaps for the first time, how the leaf phenology of individual large-canopied tropical trees can directly influence the spectral signature of satellite pixels through time. Additionally, while the level of uncertainty in our model predictions is still very high, we believe this study shows that we are near the threshold for orbital monitoring of individual crowns within tropical forests, even in challenging locations, such as cloudy Gabon. Further technical advances in remote sensing instruments into the spatial and temporal scales relevant to organismal biological processes will unlock great potential to improve our understanding of the Earth system.en_UK
dc.language.isoenen_UK
dc.publisherMDPIen_UK
dc.relationBush ER, Mitchard ETA, Silva TSF, Dimoto E, Dimbonda P, Makaga L & Abernethy K (2020) Monitoring Mega-Crown Leaf Turnover from Space. Remote Sensing, 12 (3), Art. No.: 429. https://doi.org/10.3390/rs12030429en_UK
dc.rightsThis is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citeden_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectphenologyen_UK
dc.subjectleaf turnoveren_UK
dc.subjecttropicsen_UK
dc.subjectAfrotropicsen_UK
dc.subjectSentinelen_UK
dc.subjectNDVIen_UK
dc.subjectGLIen_UK
dc.subjectSARen_UK
dc.titleMonitoring Mega-Crown Leaf Turnover from Spaceen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.3390/rs12030429en_UK
dc.citation.jtitleRemote Sensingen_UK
dc.citation.issn2072-4292en_UK
dc.citation.volume12en_UK
dc.citation.issue3en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderANPN Agence Nationale des Parcs Nationauxen_UK
dc.citation.date29/01/2020en_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationUniversity of Edinburghen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.contributor.affiliationAgence Nationale des Parcs Nationaux (ANPN)en_UK
dc.contributor.affiliationAgence Nationale des Parcs Nationaux (ANPN)en_UK
dc.contributor.affiliationAgence Nationale des Parcs Nationaux (ANPN)en_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.identifier.isiWOS:000515393800088en_UK
dc.identifier.scopusid2-s2.0-85080903616en_UK
dc.identifier.wtid1534377en_UK
dc.contributor.orcid0000-0003-4036-125Xen_UK
dc.contributor.orcid0000-0001-8174-0489en_UK
dc.contributor.orcid0000-0002-0393-9342en_UK
dc.date.accepted2020-01-23en_UK
dcterms.dateAccepted2020-01-23en_UK
dc.date.filedepositdate2020-01-29en_UK
dc.relation.funderprojectLong term trends in Central African Forest phenologyen_UK
dc.relation.funderrefSee award letteren_UK
rioxxterms.apcfully waiveden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorBush, Emma R|0000-0003-4036-125Xen_UK
local.rioxx.authorMitchard, Edward T A|en_UK
local.rioxx.authorSilva, Thiago S F|0000-0001-8174-0489en_UK
local.rioxx.authorDimoto, Edmond|en_UK
local.rioxx.authorDimbonda, Pacôme|en_UK
local.rioxx.authorMakaga, Loïc|en_UK
local.rioxx.authorAbernethy, Katharine|0000-0002-0393-9342en_UK
local.rioxx.projectSee award letter|Agence Nationale des Parcs Nationaux|http://dx.doi.org/10.13039/501100006676en_UK
local.rioxx.freetoreaddate2020-01-29en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2020-01-29|en_UK
local.rioxx.filenameremotesensing-12-00429.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source2072-4292en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
remotesensing-12-00429.pdfFulltext - Published Version1.52 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.