Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30723
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoria-Alcaraz, Jorge Aen_UK
dc.contributor.authorOchoa, Gabrielaen_UK
dc.contributor.authorEspinal, Andresen_UK
dc.contributor.authorSotelo-Figueroa, Marco Aen_UK
dc.contributor.authorOrnelas-Rodriguez, Manuelen_UK
dc.contributor.authorRostro-Gonzalez, Horacioen_UK
dc.date.accessioned2020-02-29T01:03:43Z-
dc.date.available2020-02-29T01:03:43Z-
dc.date.issued2020en_UK
dc.identifier.other2871835en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30723-
dc.description.abstractSelection hyper-heuristics are generic search tools that dynamically choose, from a given pool, the most promising operator (low-level heuristic) to apply at each iteration of the search process. The performance of these methods depends on the quality of the heuristic pool. Two types of heuristics can be part of the pool: diversification heuristics, which help to escape from local optima, and intensification heuristics, which effectively exploit promising regions in the vicinity of good solutions. An effective search strategy needs a balance between these two strategies. However, it is not straightforward to categorize an operator as intensification or diversification heuristic on complex domains. Therefore, we propose an automated methodology to do this classification. This brings methodological rigor to the configuration of an iterated local search hyper-heuristic featuring diversification and intensification stages. The methodology considers the empirical ranking of the heuristics based on an estimation of their capacity to either diversify or intensify the search. We incorporate the proposed approach into a state-of-the-art hyper-heuristic solving two domains: course timetabling and vehicle routing. Our results indicate improved performance, including new best-known solutions for the course timetabling problem.en_UK
dc.language.isoenen_UK
dc.publisherHindawi Limiteden_UK
dc.relationSoria-Alcaraz JA, Ochoa G, Espinal A, Sotelo-Figueroa MA, Ornelas-Rodriguez M & Rostro-Gonzalez H (2020) A Methodology for Classifying Search Operators as Intensification or Diversification Heuristics. Complexity, 2020 p. 10, Art. No.: 2871835. https://doi.org/10.1155/2020/2871835en_UK
dc.rightsCopyright © 2020 Jorge A. Soria-Alcaraz et al. .is is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.titleA Methodology for Classifying Search Operators as Intensification or Diversification Heuristicsen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1155/2020/2871835en_UK
dc.citation.jtitleComplexityen_UK
dc.citation.issn1099-0526en_UK
dc.citation.issn1076-2787en_UK
dc.citation.volume2020en_UK
dc.citation.epage10en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderConsejo Nacional de Ciencia y Tecnologíaen_UK
dc.citation.date13/02/2020en_UK
dc.contributor.affiliationUniversidad de Guanajuatoen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversidad de Guanajuatoen_UK
dc.contributor.affiliationUniversidad de Guanajuatoen_UK
dc.contributor.affiliationNational Technological Institute of Mexicoen_UK
dc.contributor.affiliationUniversidad de Guanajuatoen_UK
dc.identifier.isiWOS:000518014900003en_UK
dc.identifier.scopusid2-s2.0-85080030432en_UK
dc.identifier.wtid1569791en_UK
dc.contributor.orcid0000-0002-8602-6150en_UK
dc.contributor.orcid0000-0001-7649-5669en_UK
dc.contributor.orcid0000-0003-1552-3210en_UK
dc.contributor.orcid0000-0002-9795-0138en_UK
dc.contributor.orcid0000-0001-7530-9027en_UK
dc.date.accepted2019-12-13en_UK
dcterms.dateAccepted2019-12-13en_UK
dc.date.filedepositdate2020-02-14en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorSoria-Alcaraz, Jorge A|0000-0002-8602-6150en_UK
local.rioxx.authorOchoa, Gabriela|0000-0001-7649-5669en_UK
local.rioxx.authorEspinal, Andres|0000-0003-1552-3210en_UK
local.rioxx.authorSotelo-Figueroa, Marco A|0000-0002-9795-0138en_UK
local.rioxx.authorOrnelas-Rodriguez, Manuel|en_UK
local.rioxx.authorRostro-Gonzalez, Horacio|0000-0001-7530-9027en_UK
local.rioxx.project1961|Consejo Nacional de Ciencia y Tecnología|en_UK
local.rioxx.freetoreaddate2020-02-14en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2020-02-14|en_UK
local.rioxx.filename2871835.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1099-0526en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
2871835.pdfFulltext - Published Version1.35 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.