Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCui, Tianxiangen_UK
dc.contributor.authorBai, Ruibinen_UK
dc.contributor.authorDing, Shushengen_UK
dc.contributor.authorParkes, Andrew Jen_UK
dc.contributor.authorQu, Rongen_UK
dc.contributor.authorHe, Fangen_UK
dc.contributor.authorLi, Jingpengen_UK
dc.date.accessioned2019-12-07T01:02:31Z-
dc.date.available2019-12-07T01:02:31Z-
dc.date.issued2020-02en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30509-
dc.description.abstractPortfolio optimization is one of the most important problems in the finance field. The traditional Markowitz mean-variance model is often unrealistic since it relies on the perfect market information. In this work, we propose a two-stage stochastic portfolio optimization model with a comprehensive set of real-world trading constraints to address this issue. Our model incorporates the market uncertainty in terms of future asset price scenarios based on asset return distributions stemming from the real market data. Compared with existing models, our model is more reliable since it encompasses real-world trading constraints and it adopts CVaR as the risk measure. Furthermore, our model is more practical because it could help investors to design their future investment strategies based on their future asset price expectations. In order to solve the proposed stochastic model, we develop a hybrid combinatorial approach, which integrates a hybrid algorithm and a linear programming (LP) solver for the problem with a large number of scenarios. The comparison of the computational results obtained with three different metaheuristic algorithms and with our hybrid approach shows the effectiveness of the latter. The superiority of our model is mainly embedded in solution quality. The results demonstrate that our model is capable of solving complex portfolio optimization problems with tremendous scenarios while maintaining high solution quality in a reasonable amount of time and it has outstanding practical investment implications, such as effective portfolio constructions.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Science and Business Media LLCen_UK
dc.relationCui T, Bai R, Ding S, Parkes AJ, Qu R, He F & Li J (2020) A hybrid combinatorial approach to a two-stage stochastic portfolio optimization model with uncertain asset prices. Soft Computing, 24 (4), p. 2809–2831. https://doi.org/10.1007/s00500-019-04517-yen_UK
dc.rightsThis item has been embargoed for a period. During the embargo please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. This is a post-peer-review, pre-copyedit version of an article published in Soft Computing. The final authenticated version is available online at: https://doi.org/10.1007/s00500-019-04517-yen_UK
dc.rights.urihttps://storre.stir.ac.uk/STORREEndUserLicence.pdfen_UK
dc.subjectHybrid algorithmen_UK
dc.subjectCombinatorial approachen_UK
dc.subjectStochastic programmingen_UK
dc.subjectPopulation-based incremental learningen_UK
dc.subjectLocal searchen_UK
dc.subjectLearning inheritanceen_UK
dc.subjectPortfolio optimization problemen_UK
dc.titleA hybrid combinatorial approach to a two-stage stochastic portfolio optimization model with uncertain asset pricesen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2020-11-20en_UK
dc.rights.embargoreason[portfolio_journal.pdf] Publisher requires embargo of 12 months after formal publication.en_UK
dc.identifier.doi10.1007/s00500-019-04517-yen_UK
dc.citation.jtitleSoft Computingen_UK
dc.citation.issn1433-7479en_UK
dc.citation.issn1432-7643en_UK
dc.citation.volume24en_UK
dc.citation.issue4en_UK
dc.citation.spage2809en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailjli@cs.stir.ac.uken_UK
dc.citation.date19/11/2019en_UK
dc.contributor.affiliationUniversity of Nottingham Ningbo Chinaen_UK
dc.contributor.affiliationUniversity of Nottingham Ningbo Chinaen_UK
dc.contributor.affiliationNingbo Universityen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.contributor.affiliationUniversity of Nottinghamen_UK
dc.contributor.affiliationUniversity of Westminsteren_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.isiWOS:000518599800035en_UK
dc.identifier.scopusid2-s2.0-85075353655en_UK
dc.identifier.wtid1490135en_UK
dc.contributor.orcid0000-0002-6758-0084en_UK
dc.date.accepted2019-11-01en_UK
dcterms.dateAccepted2019-11-01en_UK
dc.date.filedepositdate2019-12-06en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorCui, Tianxiang|en_UK
local.rioxx.authorBai, Ruibin|en_UK
local.rioxx.authorDing, Shusheng|en_UK
local.rioxx.authorParkes, Andrew J|en_UK
local.rioxx.authorQu, Rong|en_UK
local.rioxx.authorHe, Fang|en_UK
local.rioxx.authorLi, Jingpeng|0000-0002-6758-0084en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2020-11-20en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2020-11-19en_UK
local.rioxx.licencehttps://storre.stir.ac.uk/STORREEndUserLicence.pdf|2020-11-20|en_UK
local.rioxx.filenameportfolio_journal.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1433-7479en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
portfolio_journal.pdfFulltext - Accepted Version460.06 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.