Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30393
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorFadel, Samuel Gen_UK
dc.contributor.authorDourado, Icaro Cen_UK
dc.contributor.authorWerneck, Rafael de Oen_UK
dc.contributor.authorMunoz, Javier A Ven_UK
dc.contributor.authorPenatti, Otavio A Ben_UK
dc.contributor.authorCalumby, Rodrigo Ten_UK
dc.contributor.authorLi, Lin Tzyen_UK
dc.contributor.authordos Santos, Jefersson Aen_UK
dc.contributor.authorTorres, Ricardo da Sen_UK
dc.date.accessioned2019-11-01T01:01:34Z-
dc.date.available2019-11-01T01:01:34Z-
dc.date.issued2018-09en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30393-
dc.description.abstractFlooding is the world's most costly type of natural disaster in terms of both economic losses and human causalities. A first and essential procedure toward flood monitoring is based on identifying the area most vulnerable to flooding, which gives authorities relevant regions to focus. In this letter, we propose several methods to perform flooding identification in high-resolution remote sensing images using deep learning. Specifically, some proposed techniques are based upon unique networks, such as dilated and deconvolutional ones, whereas others were conceived to exploit diversity of distinct networks in order to extract the maximum performance of each classifier. The evaluation of the proposed methods was conducted in a high-resolution remote sensing data set. Results show that the proposed algorithms outperformed the state-of-the-art baselines, providing improvements ranging from 1% to 4% in terms of the Jaccard Index.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationNogueira K, Fadel SG, Dourado IC, Werneck RdO, Munoz JAV, Penatti OAB, Calumby RT, Li LT, dos Santos JA & Torres RdS (2018) Exploiting ConvNet Diversity for Flooding Identification. IEEE Geoscience and Remote Sensing Letters, 15 (9), pp. 1446-1450. https://doi.org/10.1109/lgrs.2018.2845549en_UK
dc.rights© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_UK
dc.subjectGeotechnical Engineering and Engineering Geologyen_UK
dc.subjectElectrical and Electronic Engineeringen_UK
dc.titleExploiting ConvNet Diversity for Flooding Identificationen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/lgrs.2018.2845549en_UK
dc.citation.jtitleIEEE Geoscience and Remote Sensing Lettersen_UK
dc.citation.issn1558-0571en_UK
dc.citation.issn1545-598Xen_UK
dc.citation.volume15en_UK
dc.citation.issue9en_UK
dc.citation.spage1446en_UK
dc.citation.epage1450en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderConselho Nacional de Desenvolvimento Científico e Tecnológicoen_UK
dc.contributor.funderCoordenação de Aperfeiçoamento de Pessoal de Nível Superioren_UK
dc.contributor.funderFundação de Amparo à Pesquisa do Estado de São Pauloen_UK
dc.contributor.funderFundação de Amparo à Pesquisa do Estado de São Pauloen_UK
dc.contributor.funderFundação de Amparo à Pesquisa do Estado de São Pauloen_UK
dc.contributor.funderFundação de Amparo à Pesquisa do Estado de Minas Geraisen_UK
dc.contributor.funderFundação de Amparo à Pesquisa do Estado de São Pauloen_UK
dc.contributor.funderFundação de Amparo à Pesquisa do Estado de São Pauloen_UK
dc.contributor.funderFundação de Amparo à Pesquisa do Estado de São Pauloen_UK
dc.citation.date27/06/2018en_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationUniversity of Campinasen_UK
dc.contributor.affiliationUniversity of Campinasen_UK
dc.contributor.affiliationUniversity of Campinasen_UK
dc.contributor.affiliationUniversity of Campinasen_UK
dc.contributor.affiliationSamsung Research and Development Institute Brazilen_UK
dc.contributor.affiliationState University of Feira de Santanaen_UK
dc.contributor.affiliationUniversity of Campinasen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationUniversity of Campinasen_UK
dc.identifier.isiWOS:000443051700028en_UK
dc.identifier.scopusid2-s2.0-85049144059en_UK
dc.identifier.wtid1469439en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.contributor.orcid0000-0002-4459-4336en_UK
dc.contributor.orcid0000-0002-7185-0411en_UK
dc.contributor.orcid0000-0002-8217-7250en_UK
dc.contributor.orcid0000-0002-0456-7640en_UK
dc.contributor.orcid0000-0002-8889-1586en_UK
dc.contributor.orcid0000-0001-9772-263Xen_UK
dc.date.accepted2018-06-05en_UK
dcterms.dateAccepted2018-06-05en_UK
dc.date.filedepositdate2019-10-31en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authorFadel, Samuel G|0000-0002-4459-4336en_UK
local.rioxx.authorDourado, Icaro C|0000-0002-7185-0411en_UK
local.rioxx.authorWerneck, Rafael de O|0000-0002-8217-7250en_UK
local.rioxx.authorMunoz, Javier A V|en_UK
local.rioxx.authorPenatti, Otavio A B|en_UK
local.rioxx.authorCalumby, Rodrigo T|en_UK
local.rioxx.authorLi, Lin Tzy|0000-0002-0456-7640en_UK
local.rioxx.authordos Santos, Jefersson A|0000-0002-8889-1586en_UK
local.rioxx.authorTorres, Ricardo da S|0000-0001-9772-263Xen_UK
local.rioxx.project312167/2015-6|Conselho Nacional de Desenvolvimento Científico e Tecnológico|en_UK
local.rioxx.project88881.145912/2017-01|Coordenação de Aperfeiçoamento de Pessoal de Nível Superior|en_UK
local.rioxx.project2013/50169-1|Fundação de Amparo à Pesquisa do Estado de São Paulo|en_UK
local.rioxx.project2013/50155-0|Fundação de Amparo à Pesquisa do Estado de São Paulo|en_UK
local.rioxx.project2015/24494-8|Fundação de Amparo à Pesquisa do Estado de São Paulo|en_UK
local.rioxx.projectAPQ-00449-17|Fundação de Amparo à Pesquisa do Estado de Minas Gerais|en_UK
local.rioxx.project2014/50715-9|Fundação de Amparo à Pesquisa do Estado de São Paulo|en_UK
local.rioxx.project2016/18429-1|Fundação de Amparo à Pesquisa do Estado de São Paulo|en_UK
local.rioxx.project2014/12236-1|Fundação de Amparo à Pesquisa do Estado de São Paulo|en_UK
local.rioxx.freetoreaddate2019-10-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-10-31|en_UK
local.rioxx.filenameExploiting_ConvNet_Diversity_for_Flooding_Identifi.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1558-0571en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Exploiting_ConvNet_Diversity_for_Flooding_Identifi.pdfFulltext - Accepted Version7.09 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.