Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/30393
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Nogueira, Keiller | en_UK |
dc.contributor.author | Fadel, Samuel G | en_UK |
dc.contributor.author | Dourado, Icaro C | en_UK |
dc.contributor.author | Werneck, Rafael de O | en_UK |
dc.contributor.author | Munoz, Javier A V | en_UK |
dc.contributor.author | Penatti, Otavio A B | en_UK |
dc.contributor.author | Calumby, Rodrigo T | en_UK |
dc.contributor.author | Li, Lin Tzy | en_UK |
dc.contributor.author | dos Santos, Jefersson A | en_UK |
dc.contributor.author | Torres, Ricardo da S | en_UK |
dc.date.accessioned | 2019-11-01T01:01:34Z | - |
dc.date.available | 2019-11-01T01:01:34Z | - |
dc.date.issued | 2018-09 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/30393 | - |
dc.description.abstract | Flooding is the world's most costly type of natural disaster in terms of both economic losses and human causalities. A first and essential procedure toward flood monitoring is based on identifying the area most vulnerable to flooding, which gives authorities relevant regions to focus. In this letter, we propose several methods to perform flooding identification in high-resolution remote sensing images using deep learning. Specifically, some proposed techniques are based upon unique networks, such as dilated and deconvolutional ones, whereas others were conceived to exploit diversity of distinct networks in order to extract the maximum performance of each classifier. The evaluation of the proposed methods was conducted in a high-resolution remote sensing data set. Results show that the proposed algorithms outperformed the state-of-the-art baselines, providing improvements ranging from 1% to 4% in terms of the Jaccard Index. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_UK |
dc.relation | Nogueira K, Fadel SG, Dourado IC, Werneck RdO, Munoz JAV, Penatti OAB, Calumby RT, Li LT, dos Santos JA & Torres RdS (2018) Exploiting ConvNet Diversity for Flooding Identification. IEEE Geoscience and Remote Sensing Letters, 15 (9), pp. 1446-1450. https://doi.org/10.1109/lgrs.2018.2845549 | en_UK |
dc.rights | © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | en_UK |
dc.subject | Geotechnical Engineering and Engineering Geology | en_UK |
dc.subject | Electrical and Electronic Engineering | en_UK |
dc.title | Exploiting ConvNet Diversity for Flooding Identification | en_UK |
dc.type | Journal Article | en_UK |
dc.identifier.doi | 10.1109/lgrs.2018.2845549 | en_UK |
dc.citation.jtitle | IEEE Geoscience and Remote Sensing Letters | en_UK |
dc.citation.issn | 1558-0571 | en_UK |
dc.citation.issn | 1545-598X | en_UK |
dc.citation.volume | 15 | en_UK |
dc.citation.issue | 9 | en_UK |
dc.citation.spage | 1446 | en_UK |
dc.citation.epage | 1450 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | AM - Accepted Manuscript | en_UK |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico | en_UK |
dc.contributor.funder | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | en_UK |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | en_UK |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | en_UK |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | en_UK |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de Minas Gerais | en_UK |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | en_UK |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | en_UK |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | en_UK |
dc.citation.date | 27/06/2018 | en_UK |
dc.contributor.affiliation | Federal University of Minas Gerais | en_UK |
dc.contributor.affiliation | University of Campinas | en_UK |
dc.contributor.affiliation | University of Campinas | en_UK |
dc.contributor.affiliation | University of Campinas | en_UK |
dc.contributor.affiliation | University of Campinas | en_UK |
dc.contributor.affiliation | Samsung Research and Development Institute Brazil | en_UK |
dc.contributor.affiliation | State University of Feira de Santana | en_UK |
dc.contributor.affiliation | University of Campinas | en_UK |
dc.contributor.affiliation | Federal University of Minas Gerais | en_UK |
dc.contributor.affiliation | University of Campinas | en_UK |
dc.identifier.isi | WOS:000443051700028 | en_UK |
dc.identifier.scopusid | 2-s2.0-85049144059 | en_UK |
dc.identifier.wtid | 1469439 | en_UK |
dc.contributor.orcid | 0000-0003-3308-6384 | en_UK |
dc.contributor.orcid | 0000-0002-4459-4336 | en_UK |
dc.contributor.orcid | 0000-0002-7185-0411 | en_UK |
dc.contributor.orcid | 0000-0002-8217-7250 | en_UK |
dc.contributor.orcid | 0000-0002-0456-7640 | en_UK |
dc.contributor.orcid | 0000-0002-8889-1586 | en_UK |
dc.contributor.orcid | 0000-0001-9772-263X | en_UK |
dc.date.accepted | 2018-06-05 | en_UK |
dcterms.dateAccepted | 2018-06-05 | en_UK |
dc.date.filedepositdate | 2019-10-31 | en_UK |
rioxxterms.apc | not required | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | AM | en_UK |
local.rioxx.author | Nogueira, Keiller|0000-0003-3308-6384 | en_UK |
local.rioxx.author | Fadel, Samuel G|0000-0002-4459-4336 | en_UK |
local.rioxx.author | Dourado, Icaro C|0000-0002-7185-0411 | en_UK |
local.rioxx.author | Werneck, Rafael de O|0000-0002-8217-7250 | en_UK |
local.rioxx.author | Munoz, Javier A V| | en_UK |
local.rioxx.author | Penatti, Otavio A B| | en_UK |
local.rioxx.author | Calumby, Rodrigo T| | en_UK |
local.rioxx.author | Li, Lin Tzy|0000-0002-0456-7640 | en_UK |
local.rioxx.author | dos Santos, Jefersson A|0000-0002-8889-1586 | en_UK |
local.rioxx.author | Torres, Ricardo da S|0000-0001-9772-263X | en_UK |
local.rioxx.project | 312167/2015-6|Conselho Nacional de Desenvolvimento Científico e Tecnológico| | en_UK |
local.rioxx.project | 88881.145912/2017-01|Coordenação de Aperfeiçoamento de Pessoal de Nível Superior| | en_UK |
local.rioxx.project | 2013/50169-1|Fundação de Amparo à Pesquisa do Estado de São Paulo| | en_UK |
local.rioxx.project | 2013/50155-0|Fundação de Amparo à Pesquisa do Estado de São Paulo| | en_UK |
local.rioxx.project | 2015/24494-8|Fundação de Amparo à Pesquisa do Estado de São Paulo| | en_UK |
local.rioxx.project | APQ-00449-17|Fundação de Amparo à Pesquisa do Estado de Minas Gerais| | en_UK |
local.rioxx.project | 2014/50715-9|Fundação de Amparo à Pesquisa do Estado de São Paulo| | en_UK |
local.rioxx.project | 2016/18429-1|Fundação de Amparo à Pesquisa do Estado de São Paulo| | en_UK |
local.rioxx.project | 2014/12236-1|Fundação de Amparo à Pesquisa do Estado de São Paulo| | en_UK |
local.rioxx.freetoreaddate | 2019-10-31 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/all-rights-reserved|2019-10-31| | en_UK |
local.rioxx.filename | Exploiting_ConvNet_Diversity_for_Flooding_Identifi.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 1558-0571 | en_UK |
Appears in Collections: | Computing Science and Mathematics Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Exploiting_ConvNet_Diversity_for_Flooding_Identifi.pdf | Fulltext - Accepted Version | 7.09 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.