Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30374
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorDalla Mura, Mauroen_UK
dc.contributor.authorChanussot, Jocelynen_UK
dc.contributor.authorSchwartz, William Robsonen_UK
dc.contributor.authordos Santos, Jefersson Alexen_UK
dc.date.accessioned2019-10-30T01:03:03Z-
dc.date.available2019-10-30T01:03:03Z-
dc.date.issued2019-10en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30374-
dc.description.abstractSemantic segmentation requires methods capable of learning high-level features while dealing with large volume of data. Toward such goal, convolutional networks can learn specific and adaptable features based on the data. However, these networks are not capable of processing a whole remote sensing image, given its huge size. To overcome such limitation, the image is processed using fixed size patches. The definition of the input patch size is usually performed empirically (evaluating several sizes) or imposed (by network constraint). Both strategies suffer from drawbacks and could not lead to the best patch size. To alleviate this problem, several works exploited multicontext information by combining networks or layers. This process increases the number of parameters, resulting in a more difficult model to train. In this paper, we propose a novel technique to perform semantic segmentation of remote sensing images that exploits a multicontext paradigm without increasing the number of parameters while defining, in training time, the best patch size. The main idea is to train a dilated network with distinct patch sizes, allowing it to capture multicontext characteristics from heterogeneous contexts. While processing these varying patches, the network provides a score for each patch size, helping in the definition of the best size for the current scenario. A systematic evaluation of the proposed algorithm is conducted using four high-resolution remote sensing data sets with very distinct properties. Our results show that the proposed algorithm provides improvements in pixelwise classification accuracy when compared to the state-of-the-art methods.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationNogueira K, Dalla Mura M, Chanussot J, Schwartz WR & dos Santos JA (2019) Dynamic Multicontext Segmentation of Remote Sensing Images Based on Convolutional Networks. IEEE Transactions on Geoscience and Remote Sensing, 57 (10), pp. 7503-7520. https://doi.org/10.1109/tgrs.2019.2913861en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectConvolutional networks (ConvNets)en_UK
dc.subjectdeep learningen_UK
dc.subjectmulticontexten_UK
dc.subjectmultiscaleen_UK
dc.subjectremote sensingen_UK
dc.subjectsemantic segmentationen_UK
dc.titleDynamic Multicontext Segmentation of Remote Sensing Images Based on Convolutional Networksen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[Nogueira-TGRS-2019.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1109/tgrs.2019.2913861en_UK
dc.citation.jtitleIEEE Transactions on Geoscience and Remote Sensingen_UK
dc.citation.issn1558-0644en_UK
dc.citation.issn0196-2892en_UK
dc.citation.volume57en_UK
dc.citation.issue10en_UK
dc.citation.spage7503en_UK
dc.citation.epage7520en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderFundação de Amparo à Pesquisa do Estado de Minas Geraisen_UK
dc.contributor.funderConselho Nacional de Desenvolvimento Científico e Tecnológicoen_UK
dc.contributor.funderPró-Reitoria de Pesquisa, Universidade Federal de Minas Geraisen_UK
dc.contributor.funderCoordenação de Aperfeiçoamento de Pessoal de Nível Superioren_UK
dc.author.emailkeiller.nogueira@stir.ac.uken_UK
dc.citation.date03/06/2019en_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationUniversite de Grenobleen_UK
dc.contributor.affiliationUniversite de Grenobleen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.identifier.isiWOS:000489829200017en_UK
dc.identifier.wtid1469472en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.contributor.orcid0000-0002-9656-9087en_UK
dc.contributor.orcid0000-0003-4817-2875en_UK
dc.contributor.orcid0000-0002-8889-1586en_UK
dc.date.accepted2019-04-21en_UK
dcterms.dateAccepted2019-04-21en_UK
dc.date.filedepositdate2019-10-25en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authorDalla Mura, Mauro|0000-0002-9656-9087en_UK
local.rioxx.authorChanussot, Jocelyn|0000-0003-4817-2875en_UK
local.rioxx.authorSchwartz, William Robson|en_UK
local.rioxx.authordos Santos, Jefersson Alex|0000-0002-8889-1586en_UK
local.rioxx.projectAPQ-00449-17|Fundação de Amparo à Pesquisa do Estado de Minas Gerais|en_UK
local.rioxx.project312167/2015-6|Conselho Nacional de Desenvolvimento Científico e Tecnológico|en_UK
local.rioxx.projectProject ID unknown|Pró-Reitoria de Pesquisa, Universidade Federal de Minas Gerais|en_UK
local.rioxx.project(88881.131682/2016-01)|Coordenação de Aperfeiçoamento de Pessoal de Nível Superior|en_UK
local.rioxx.freetoreaddate2269-05-04en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameNogueira-TGRS-2019.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1558-0644en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
Nogueira-TGRS-2019.pdfFulltext - Published Version27.68 MBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.