Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30344
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNogueira, Keilleren_UK
dc.contributor.authorPenatti, Otávio A Ben_UK
dc.contributor.authordos Santos, Jefersson Aen_UK
dc.date.accessioned2019-10-29T01:00:56Z-
dc.date.available2019-10-29T01:00:56Z-
dc.date.issued2017-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30344-
dc.description.abstractWe present an analysis of three possible strategies for exploiting the power of existing convolutional neural networks (ConvNets or CNNs) in different scenarios from the ones they were trained: full training, fine tuning, and using ConvNets as feature extractors. In many applications, especially including remote sensing, it is not feasible to fully design and train a new ConvNet, as this usually requires a considerable amount of labeled data and demands high computational costs. Therefore, it is important to understand how to better use existing ConvNets. We perform experiments with six popular ConvNets using three remote sensing datasets. We also compare ConvNets in each strategy with existing descriptors and with state-of-the-art baselines. Results point that fine tuning tends to be the best performing strategy. In fact, using the features from the fine-tuned ConvNet with linear SVM obtains the best results. We also achieved state-of-the-art results for the three datasets used.en_UK
dc.language.isoenen_UK
dc.publisherElsevier BVen_UK
dc.relationNogueira K, Penatti OAB & dos Santos JA (2017) Towards better exploiting convolutional neural networks for remote sensing scene classification. <i>Pattern Recognition</i>, 61, pp. 539-556. https://doi.org/10.1016/j.patcog.2016.07.001en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectSignal Processingen_UK
dc.subjectSoftwareen_UK
dc.subjectArtificial Intelligenceen_UK
dc.subjectComputer Vision and Pattern Recognitionen_UK
dc.titleTowards better exploiting convolutional neural networks for remote sensing scene classificationen_UK
dc.typeJournal Articleen_UK
dc.rights.embargodate2999-12-31en_UK
dc.rights.embargoreason[1-s2.0-S0031320316301509-main.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1016/j.patcog.2016.07.001en_UK
dc.citation.jtitlePattern Recognitionen_UK
dc.citation.issn0031-3203en_UK
dc.citation.issn0031-3203en_UK
dc.citation.volume61en_UK
dc.citation.spage539en_UK
dc.citation.epage556en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderCAPES, and Fapemigen_UK
dc.contributor.funderConselho Nacional de Desenvolvimento Científico e Tecnológicoen_UK
dc.author.emailkeiller.nogueira@stir.ac.uken_UK
dc.citation.date02/07/2016en_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.contributor.affiliationFederal University of Minas Geraisen_UK
dc.identifier.isiWOS:000385899400042en_UK
dc.identifier.scopusid2-s2.0-84979775123en_UK
dc.identifier.wtid1469432en_UK
dc.contributor.orcid0000-0003-3308-6384en_UK
dc.contributor.orcid0000-0002-8889-1586en_UK
dc.date.accepted2016-07-01en_UK
dcterms.dateAccepted2016-07-01en_UK
dc.date.filedepositdate2019-10-28en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorNogueira, Keiller|0000-0003-3308-6384en_UK
local.rioxx.authorPenatti, Otávio A B|en_UK
local.rioxx.authordos Santos, Jefersson A|0000-0002-8889-1586en_UK
local.rioxx.projectAPQ-00768-14|CAPES, and Fapemig|en_UK
local.rioxx.project449638/2014-6|Conselho Nacional de Desenvolvimento Científico e Tecnológico|en_UK
local.rioxx.freetoreaddate2266-06-03en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filename1-s2.0-S0031320316301509-main.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0031-3203en_UK
Appears in Collections:Computing Science and Mathematics Journal Articles

Files in This Item:
File Description SizeFormat 
1-s2.0-S0031320316301509-main.pdfFulltext - Published Version4.52 MBAdobe PDFUnder Permanent Embargo    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.