Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30273
Appears in Collections:Computing Science and Mathematics Journal Articles
Peer Review Status: Refereed
Title: Quantification of the pore size distribution of soils: Assessment of existing software using tomographic and synthetic 3D images
Author(s): Houston, A.N.
Otten, W.
Falconer, R.
Monga, O.
Baveye, P.C.
Hapca, S.M.
Keywords: Porous media
Soil
Pore size distribution
Computed tomography
X-ray
Issue Date: Aug-2017
Citation: Houston A, Otten W, Falconer R, Monga O, Baveye P & Hapca S (2017) Quantification of the pore size distribution of soils: Assessment of existing software using tomographic and synthetic 3D images. Geoderma, 299, pp. 73-82. https://doi.org/10.1016/j.geoderma.2017.03.025
Abstract: The pore size distribution (PSD) of the void space is widely used to predict a range of processes in soils. Recent advances in X-ray computed tomography (CT) now afford novel ways to obtain exact data on pore geometry, which has stimulated the development of algorithms to estimate the pore size distribution from 3D data sets. To date there is however no clear consensus on how PSDs should be estimated, and in what form PSDs are best presented. In this article, we first review the theoretical principles shared by the various methods for PSD estimation. Then we select methods that are widely adopted in soil science and geoscience, and we use a robust statistical method to compare their application to synthetic image samples, for which analytical solutions of PSDs are available, and X-ray CT images of soil samples selected from different treatments to obtain wide ranging PSDs. Results indicate that, when applied to the synthetic images, all methods presenting PSDs as pore volume per class size (i.e., Avizo, CTAnalyser, BoneJ, Quantim4, and DTM), perform well. Among them, the methods based on Maximum Inscribed Balls (Bone J, CTAnalyser, Quantim4) also produce similar PSDs for the soil samples, whereas the Delaunay Triangulation Method (DTM) produces larger estimates of the pore volume occupied by small pores, and Avizo yields larger estimates of the pore volume occupied by large pores. By contrast, the methods that calculate PSDs as object population fraction per volume class (Avizo, 3DMA, DFS-FIJI) perform inconsistently on the synthetic images and do not appear well suited to handle the more complex geometries of soils. It is anticipated that the extensive evaluation of method performance carried out in this study, together with the recommendations reached, will be useful to the porous media community to make more informed choices relative to suitable PSD estimation methods, and will help improve current practice, which is often ad hoc and heuristic. © 2017 Elsevier B.V.
DOI Link: 10.1016/j.geoderma.2017.03.025
Rights: Accepted refereed manuscript of: Houston A, Otten W, Falconer R, Monga O, Baveye P & Hapca S (2017) Quantification of the pore size distribution of soils: Assessment of existing software using tomographic and synthetic 3D images. Geoderma, 299, pp. 73-82. DOI: https://doi.org/10.1016/j.geoderma.2017.03.025 © 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Licence URL(s): http://creativecommons.org/licenses/by-nc-nd/4.0/

Files in This Item:
File Description SizeFormat 
PSD_manuscript_S_Hapca_accepted_with_figures.pdfFulltext - Accepted Version1.17 MBAdobe PDFView/Open



This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.