Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/30271
Appears in Collections: | Biological and Environmental Sciences Journal Articles |
Peer Review Status: | Refereed |
Title: | Pseudo-nitzschia Blooms in a Coastal Upwelling System: Remote Sensing Detection, Toxicity and Environmental Variables |
Author(s): | Torres Palenzuela, Jesus M González Vilas, Luis Bellas, Francisco M Garet, Elina González-Fernández, África Spyrakos, Evangelos |
Keywords: | Pseudo-nitzschia domoic acid MERIS algorithms upwelling Galician rias |
Issue Date: | 19-Sep-2019 |
Date Deposited: | 8-Oct-2019 |
Citation: | Torres Palenzuela JM, González Vilas L, Bellas FM, Garet E, González-Fernández Á & Spyrakos E (2019) Pseudo-nitzschia Blooms in a Coastal Upwelling System: Remote Sensing Detection, Toxicity and Environmental Variables. Water, 11 (9), Art. No.: 1954. https://doi.org/10.3390/w11091954 |
Abstract: | The NW coast of the Iberian Peninsula is dominated by extensive shellfish farming, which places this region as a world leader in mussel production. Harmful algal blooms in the area frequent lead to lengthy harvesting closures threatening food security. This study developed a framework for the detection of Pseudo-nitzschia blooms in the Galician rias from satellite data (MERIS full-resolution images) and identified key variables that affect their abundance and toxicity. Two events of toxin-containing Pseudo-nitzschia were detected (up to 2.5 μg L−1 pDA) in the area. This study suggests that even moderate densities of Pseudo-nitzschia in this area might indicate high toxin content. Empirical models for particulate domoic acid (pDA) were developed based on MERIS FR data. The resulting remote-sensing model, including MERIS bands centered around 510, 560, and 620 nm explain 73% of the pDA variance (R2 = 0.73, p < 0.001). The results show that higher salinity values and lower Si(OH)4/N ratios favour higher Pseudo-nitzschia spp. abundances. High pDA values seem to be associated with relatively high PO43, low NO3− concentrations, and low Si(OH)4/N. While MERIS FR data and regionally specific algorithms can be useful for detecting Pseudo-nitzschia blooms, nutrient relationships are crucial for predicting the toxicity of these blooms. |
DOI Link: | 10.3390/w11091954 |
Rights: | This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited |
Licence URL(s): | http://creativecommons.org/licenses/by/4.0/ |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
water-11-01954.pdf | Fulltext - Published Version | 2.2 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
A file in this item is licensed under a Creative Commons License
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.