Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/30199
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Taoen_UK
dc.contributor.authorZhang, Jiafengen_UK
dc.contributor.authorGao, Guien_UK
dc.contributor.authorYang, Jianen_UK
dc.contributor.authorMarino, Armandoen_UK
dc.date.accessioned2019-10-01T00:00:13Z-
dc.date.available2019-10-01T00:00:13Z-
dc.date.issued2020-01en_UK
dc.identifier.urihttp://hdl.handle.net/1893/30199-
dc.description.abstractPolarimetric whitening filter (PWF) can be used to filter polarimetric synthetic aperture radar (PolSAR) images to improve the contrast between ships and sea clutter background. For this reason, the output of the filter can be used to detect ships. This paper deals with the setting of the threshold over PolSAR images filtered by the PWF. Two parameter-constant false alarm rate (2P-CFAR) is a common detection method used on whitened polarimetric images. It assumes that the probability density function (PDF) of the filtered image intensity is characterized by a log-normal distribution. However, this assumption does not always hold. In this paper, we propose a systemic analytical framework for CFAR algorithms based on PWF or multi-look PWF (MPWF). The framework covers the entire log-cumulants space in terms of the textural distributions in the product model, including the constant, gamma, inverse gamma, Fisher, beta, inverse beta, and generalized gamma distributions (GΓDs). We derive the analytical forms of the PDF for each of the textural distributions and the probability of false alarm (PFA). Finally, the threshold is derived by fixing the false alarm rate (FAR). Experimental results using both the simulated and real data demonstrate that the derived expressions and CFAR algorithms are valid and robust.en_UK
dc.language.isoenen_UK
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_UK
dc.relationLiu T, Zhang J, Gao G, Yang J & Marino A (2020) CFAR Ship Detection in Polarimetric Synthetic Aperture Radar Images Based on Whitening Filter. IEEE Transactions on Geoscience and Remote Sensing, 58 (1), pp. 58-81. https://doi.org/10.1109/tgrs.2019.2931353en_UK
dc.rights© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. https://doi.org/10.1109/TGRS.2019.2931353en_UK
dc.subjectConstant false alarm rate (CFAR)en_UK
dc.subjectpolarimetric whitening filter (PWF)en_UK
dc.subjectship detectionen_UK
dc.subjectsynthetic aperture radar.en_UK
dc.titleCFAR Ship Detection in Polarimetric Synthetic Aperture Radar Images Based on Whitening Filteren_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1109/tgrs.2019.2931353en_UK
dc.citation.jtitleIEEE Transactions on Geoscience and Remote Sensingen_UK
dc.citation.issn1558-0644en_UK
dc.citation.issn0196-2892en_UK
dc.citation.volume58en_UK
dc.citation.issue1en_UK
dc.citation.spage58en_UK
dc.citation.epage81en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.contributor.funderNational Natural Science Foundation of Chinaen_UK
dc.contributor.funderNational Natural Science Foundation of Chinaen_UK
dc.author.emailarmando.marino@stir.ac.uken_UK
dc.citation.date26/09/2019en_UK
dc.contributor.affiliationPLA Naval University of Engineeringen_UK
dc.contributor.affiliationPLA Naval University of Engineeringen_UK
dc.contributor.affiliationHunang University of Science and Technologyen_UK
dc.contributor.affiliationTsinghua Universityen_UK
dc.contributor.affiliationBiological and Environmental Sciencesen_UK
dc.identifier.isiWOS:000507307800005en_UK
dc.identifier.scopusid2-s2.0-85078228266en_UK
dc.identifier.wtid1455347en_UK
dc.contributor.orcid0000-0002-9596-4536en_UK
dc.contributor.orcid0000-0003-4596-5829en_UK
dc.contributor.orcid0000-0002-4531-3102en_UK
dc.date.accepted2019-07-20en_UK
dcterms.dateAccepted2019-07-20en_UK
dc.date.filedepositdate2019-09-30en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorLiu, Tao|0000-0002-9596-4536en_UK
local.rioxx.authorZhang, Jiafeng|en_UK
local.rioxx.authorGao, Gui|0000-0003-4596-5829en_UK
local.rioxx.authorYang, Jian|en_UK
local.rioxx.authorMarino, Armando|0000-0002-4531-3102en_UK
local.rioxx.project61771483|National Natural Science Foundation of China|en_UK
local.rioxx.project61490693|National Natural Science Foundation of China|en_UK
local.rioxx.freetoreaddate2019-09-30en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2019-09-30|en_UK
local.rioxx.filenameFINAL VERSION2.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1558-0644en_UK
Appears in Collections:Biological and Environmental Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
FINAL VERSION2.pdfFulltext - Accepted Version3.33 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.